Как df.groupby ('A'). Agg ('min') переводится в featuretools? - PullRequest
0 голосов
/ 28 июня 2019

Скажите, у меня есть этот простой фрагмент кода. Я сгруппирую, объединю и объединю фрейм данных:


Использование панд:


Данные

df = pd.DataFrame({'A': [1, 1, 2, 2],
               'B': [1, 2, 3, 4],
               'C': [0.3, 0.2, 1.2, -0.5]})
ДФ:
    A   B   C
0   1   1   0.3
1   1   2   0.2
2   2   3   1.2
3   2   4   -0.5

Группировка и совокупность

df_result = df.groupby('A').agg('min')
df_result.columns =  ['groupby_A(min_'+x+')' for x in df_result.columns]
df_result:
    groupby_A(min_B)    groupby_A(min_C)
A       
1   1                   0.2
2   3                   -0.5

Слияние

df_new = pd.merge(df,df_result,on='A')
df_new
df_new:
    A   B   C       groupby_A(min_B)    groupby_A(min_C)
0   1   1   0.3     1                   0.2
1   1   2   0.2     1                   0.2
2   2   3   1.2     3                  -0.5
3   2   4   -0.5    3                  -0.5

Попытка использования featuretools:


# ---- Import the Module ----
import featuretools as ft

# ---- Make the Entity Set (the set of all tables) ----
es = ft.EntitySet()

# ---- Make the Entity (the table) ----
es.entity_from_dataframe(entity_id = 'df', 
                         dataframe = df)


# ---- Do the Deep Feature Synthesis (group, aggregate, and merge the features) ----
feature_matrix, feature_names = ft.dfs(entityset = es, 
                                       target_entity = 'df',
                                       trans_primitives = ['cum_min'])

feature_matrix
feature_matrix:
        A       B       C       CUM_MIN(A)  CUM_MIN(B)  CUM_MIN(C)
index                       
0       1       1       0.3     1           1           0.3
1       1       2       0.2     1           1           0.2
2       2       3       1.2     1           1           0.2
3       2       4       -0.5    1           1           -0.5

Как операция с Pandas переводится в featuretools (желательно без добавления другой таблицы)?

Моя попытка с помощью featuretools не дает правильного вывода, но я считаю, что процесс, который я использовал, несколько корректен.

1 Ответ

0 голосов
/ 28 июня 2019

Вот рекомендуемый способ сделать это в Featuretools.Вам нужно создать еще одну таблицу, чтобы она работала именно так, как вы хотите.

import featuretools as ft
import pandas as pd

df = pd.DataFrame({'A': [1, 1, 2, 2],
                   'B': [1, 2, 3, 4],
                   'C': [0.3, 0.2, 1.2, -0.5]})

es = ft.EntitySet()

es.entity_from_dataframe(entity_id="example",
                          index="id",
                          make_index=True,
                          dataframe=df)

es.normalize_entity(new_entity_id="a_entity",
                    base_entity_id="example",
                    index="A")

fm, fl = ft.dfs(target_entity="example",
                entityset=es,
                agg_primitives=["min"])

fm

это возвращает

    A  B    C  a_entity.MIN(example.B)  a_entity.MIN(example.C)
id                                                             
0   1  1  0.3                        1                      0.2
1   1  2  0.2                        1                      0.2
2   2  3  1.2                        3                     -0.5
3   2  4 -0.5                        3                     -0.5

Если вы не хотите создавать дополнительную таблицу, вы можете попробовать использовать примитив cum_min, который вычисляет совокупное значение после группировки по A

df = pd.DataFrame({'A': [1, 1, 2, 2],
                   'B': [1, 2, 3, 4],
                   'C': [0.3, 0.2, 1.2, -0.5]})

es = ft.EntitySet()

es.entity_from_dataframe(entity_id="example",
                          index="id",
                          make_index=True,
                          variable_types={
                              "A": ft.variable_types.Id
                          },
                          dataframe=df,)

fm, fl = ft.dfs(target_entity="example",
                entityset=es,
                groupby_trans_primitives=["cum_min"])

fm

это возвращает

    B    C  A  CUM_MIN(C) by A  CUM_MIN(B) by A
id                                             
0   1  0.3  1              0.3              1.0
1   2  0.2  1              0.2              1.0
2   3  1.2  2              1.2              3.0
3   4 -0.5  2             -0.5              3.0
...