Я пытался проверить вывод fft против numpy fft для модульного тестирования, я понял вскоре после того, как он потерпел неудачу, это было не потому, что я сделал что-то не так, но skcuda буквально не дает тот же ответ , Я знал, что они будут немного отличаться, но по крайней мере одно из чисел на несколько порядков отличается от того, что производит numpy, и оба allclose
и almost_equal
возвращают огромные ошибки (33% и 25% для rtol=1e-6
, 16% для atol=1e-6
). Что я здесь не так делаю? Можно это исправить?
Тестовый файл:
import pycuda.autoinit
from skcuda import fft
from pycuda import gpuarray
import numpy as np
def test_skcuda():
array_0 = np.array([[1, 2, 3, 4, 5, 4, 3, 2, 1, 0]], dtype=np.float32)
array_1 = array_0 * 10
time_domain_signal = np.array([array_0[0], array_1[0]], dtype=np.float32)
fft_point_count = 10
fft_plan = fft.Plan(fft_point_count, np.float32, np.complex64,
batch=2)
fft_reserved = gpuarray.empty((2, fft_point_count // 2 + 1), dtype=np.complex64)
fft.fft(gpuarray.to_gpu(time_domain_signal), fft_reserved, fft_plan)
np.testing.assert_array_almost_equal(
np.fft.rfft(time_domain_signal, fft_point_count), fft_reserved.get())
test_skcuda()
Ошибка подтверждения:
AssertionError:
Arrays are not almost equal to 6 decimals
(mismatch 25.0%)
x: array([[ 2.500000e+01+0.000000e+00j, -8.472136e+00-6.155367e+00j,
-1.193490e-15+2.331468e-15j, 4.721360e-01-1.453085e+00j,
2.664535e-15+0.000000e+00j, 1.000000e+00+0.000000e+00j],...
y: array([[ 2.500000e+01+0.000000e+00j, -8.472136e+00-6.155367e+00j,
8.940697e-08+5.960464e-08j, 4.721359e-01-1.453085e+00j,
0.000000e+00+0.000000e+00j, 1.000000e+00+0.000000e+00j],...
вывод на печать:
#numpy
[[ 2.50000000e+01+0.00000000e+00j -8.47213595e+00-6.15536707e+00j
-1.19348975e-15+2.33146835e-15j 4.72135955e-01-1.45308506e+00j
2.66453526e-15+0.00000000e+00j 1.00000000e+00+0.00000000e+00j]
[ 2.50000000e+02+0.00000000e+00j -8.47213595e+01-6.15536707e+01j
-1.11022302e-14+2.39808173e-14j 4.72135955e+00-1.45308506e+01j
3.55271368e-14+7.10542736e-15j 1.00000000e+01+0.00000000e+00j]]
#skcuda
[[ 2.5000000e+01+0.0000000e+00j -8.4721355e+00-6.1553669e+00j
8.9406967e-08+5.9604645e-08j 4.7213593e-01-1.4530852e+00j
0.0000000e+00+0.0000000e+00j 1.0000000e+00+0.0000000e+00j]
[ 2.5000000e+02+0.0000000e+00j -8.4721359e+01-6.1553673e+01j
1.4305115e-06-4.7683716e-07j 4.7213597e+00-1.4530851e+01j
0.0000000e+00+1.9073486e-06j 1.0000000e+01+0.0000000e+00j]]