Я строю модель keras для классификации кошек и собак.Я использовал трансферное обучение с функциями узкого места и тонкую настройку с помощью модели VGG.теперь я получаю очень хорошую точность проверки, например, 97%, но когда я получаю прогноз, я получаю очень плохие результаты в отношении отчета о классификации и матрицы путаницы.В чем может быть проблема.Вот код точной настройки и результаты, которые я получаю
base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=(150,150,3))
print('Model loaded.')
# build a classifier model to put on top of the convolutional model
top_model = Sequential()
top_model.add(Flatten(input_shape=base_model.output_shape[1:]))
top_model.add(Dense(256, activation='relu'))
top_model.add(Dropout(0.5))
top_model.add(Dense(2, activation='sigmoid'))
# note that it is necessary to start with a fully-trained
# classifier, including the top classifier,
# in order to successfully do fine-tuning
top_model.load_weights(top_model_weights_path)
# add the model on top of the convolutional base
# model.add(top_model)
model = Model(inputs=base_model.input, outputs=top_model(base_model.output))
# set the first 25 layers (up to the last conv block)
# to non-trainable (weights will not be updated)
for layer in model.layers[:15]:
layer.trainable = False
# compile the model with a SGD/momentum optimizer
# and a very slow learning rate.
model.compile(loss='binary_crossentropy',
optimizer=optimizers.SGD(lr=1e-4, momentum=0.9),
metrics=['accuracy'])
# prepare data augmentation configuration
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='categorical')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='categorical')
model.summary()
# fine-tune the model
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size,
verbose=2)
scores=model.evaluate_generator(generator=validation_generator,
steps=nb_validation_samples // batch_size)
print("Accuracy = ", scores[1])
Y_pred = model.predict_generator(validation_generator, nb_validation_samples // batch_size)
y_pred = np.argmax(Y_pred, axis=1)
print('Confusion Matrix')
print(confusion_matrix(validation_generator.classes, y_pred))
print('Classification Report')
target_names = ['Cats', 'Dogs']
print(classification_report(validation_generator.classes, y_pred, target_names=target_names))
model.save("model_tuned.h5")
Точность = 0,974375
Матрица путаницы [[186 214] [199 201]]
Отчет о классификации
precision recall f1-score support
Cats 0.48 0.47 0.47 400
Dogs 0.48 0.50 0.49 400
микро ср 0,48 0,48 0,48 800 макрос сред 0,48 0,48 0,48 800 средневзвешенный 0,48 0,48 0,48 800