Я использую интерфейс R для Keras версии 2.14 и версии 1.5 для Tensorflow.
Когда я запускаю следующий код на моей локальной машине, он запускается без проблем. Когда я запускаю его в cloudml, я получаю сообщение об ошибке, приведенное ниже.
Я проверил форумы, но, обладая ограниченными знаниями Python, не смог перевести решения, данные до сих пор в R.
Спасибо за вашу помощь.
Сообщение об ошибке:
"Ошибка: ValueError: Слой conv2d_1 был вызван с входом, который не является символическим тензором. Полученный тип:. Полный ввод: []. Все входы в слой должны быть тензорами. Подробная трассировка: Файл" / usr / local / lib / python2.7 / dist-packages / keras / engine / base_layer.py ", строка 414, в call self.assert_input_compatibility (входные данные) Файл" /usr/local/lib/python2.7 /dist-packages/keras/engine/base_layer.py ", строка 285, в assert_input_compatibility str (входные данные) + '. Все входные данные для слоя"
Вот полный код:
original_dataset_dir <- "./train"
base_dir <- "./cats_and_dogs_small"
train_dir <- file.path(base_dir, "train")
validation_dir <- file.path(base_dir, "validation")
test_dir <- file.path(base_dir, "test")
train_cats_dir <- file.path(train_dir, "cats")
train_dogs_dir <- file.path(train_dir, "dogs")
validation_cats_dir <- file.path(validation_dir, "cats")
validation_dogs_dir <- file.path(validation_dir, "dogs")
test_cats_dir <- file.path(test_dir, "cats")
test_dogs_dir <- file.path(test_dir, "dogs")
cat("total training cat images:", length(list.files(train_cats_dir)), "\n")
cat("total training dog images:", length(list.files(train_dogs_dir)), "\n")
cat("total validation cat images:", length(list.files(validation_cats_dir)), "\n")
cat("total validation dog images:", length(list.files(validation_dogs_dir)), "\n")
cat("total test cat images:", length(list.files(test_cats_dir)), "\n")
cat("total test dog images:", length(list.files(test_dogs_dir)), "\n")
list.files(test_dogs_dir)
# now create the model
library(keras)
model <- keras_model_sequential() %>%
layer_conv_2d(filters = 32, kernel_size = c(3, 3), activation = "relu",
input_shape = c(150, 150, 3)) %>%
layer_max_pooling_2d(pool_size = c(2, 2)) %>%
layer_conv_2d(filters = 64, kernel_size = c(3, 3), activation = "relu") %>%
layer_max_pooling_2d(pool_size = c(2, 2)) %>%
layer_conv_2d(filters = 128, kernel_size = c(3, 3), activation = "relu") %>%
layer_max_pooling_2d(pool_size = c(2, 2)) %>%
layer_conv_2d(filters = 128, kernel_size = c(3, 3), activation = "relu") %>%
layer_max_pooling_2d(pool_size = c(2, 2)) %>%
layer_flatten() %>%
layer_dense(units = 512, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid")
# look at the model
summary(model)
model %>% compile(
loss = "binary_crossentropy",
optimizer = optimizer_rmsprop(lr = 1e-4),
metrics = c("acc")
)
# All images will be rescaled by 1/255
train_datagen <- image_data_generator(rescale = 1/255)
validation_datagen <- image_data_generator(rescale = 1/255)
train_generator <- flow_images_from_directory(
# This is the target directory
train_dir,
# This is the data generator
train_datagen,
# All images will be resized to 150x150
target_size = c(150, 150),
batch_size = 20,
# Since we use binary_crossentropy loss, we need binary labels
class_mode = "binary"
)
validation_generator <- flow_images_from_directory(
validation_dir,
validation_datagen,
target_size = c(150, 150),
batch_size = 20,
class_mode = "binary"
)
batch <- generator_next(train_generator)
str(batch)
history <- model %>% fit_generator(
train_generator,
steps_per_epoch = 100,
epochs = 5,
validation_data = validation_generator,
validation_steps = 50
)
model %>% save_model_hdf5("cats_and_dogs_small_1.h5")
plot(history)
cml1.R
library(cloudml)
#gcloud_init()
cloudml_train("cats-and-dogs.R")