Я пытаюсь применить логистическую регрессию к моему набору данных, но его точность дает 1
df = pd.read_csv("train.csv", header=0)
df = df[["PassengerId", "Survived", "Sex", "Age", "Embarked"]]
df.dropna(inplace=True)
X = df[["Sex", "Age"]]
X_train = np.array(X)
Y = df["Survived"]
Y_train = np.array(Y)
clf = LogisticRegression()
clf.fit(X_train, Y_train)
df1 = pd.read_csv("test.csv", header=0)
df1 = df1[["PassengerId", "Survived", "Sex", "Age", "Embarked"]]
df1.dropna(inplace=True)
X = df1[["Sex", "Age"]]
X_test = np.array(X)
Y = df1["Survived"]
Y_test = np.array(Y)
X_test = X_test.astype(float)
Y_test = Y_test.astype(float)
#to convert string data to float
accuracy = clf.score(X_test, Y_test)
print("Accuracy = ", accuracy)
Я ожидаю выходной сигнал от 0 до 1, но всегда получаю 1,0