Если вы можете произвести выборку данных с достаточно высоким разрешением вокруг интересующей вас функции, то, более разреженно, везде, где возникает проблема, становится определение области под каждой выборкой. Это легко сделать с обычными прямоугольными выборками, и, вероятно, это можно сделать пошагово с шагом разрешения вокруг начала координат. Подход, который я использовал, состоит в том, чтобы генерировать двумерные клетки Вороного для каждого образца, чтобы определить их площадь. Я извлек большую часть кода из этого ответа, поскольку в нем уже были почти все необходимые компоненты.
import numpy as np
from scipy.spatial import Voronoi
#taken from: # https://stackoverflow.com/questions/28665491/getting-a-bounded-polygon-coordinates-from-voronoi-cells
#computes voronoi regions bounded by a bounding box
def square_voronoi(xy, bbox): #bbox: (min_x, max_x, min_y, max_y)
# Select points inside the bounding box
points_center = xy[np.where((bbox[0] <= xy[:,0]) * (xy[:,0] <= bbox[1]) * (bbox[2] <= xy[:,1]) * (bbox[2] <= bbox[3]))]
# Mirror points
points_left = np.copy(points_center)
points_left[:, 0] = bbox[0] - (points_left[:, 0] - bbox[0])
points_right = np.copy(points_center)
points_right[:, 0] = bbox[1] + (bbox[1] - points_right[:, 0])
points_down = np.copy(points_center)
points_down[:, 1] = bbox[2] - (points_down[:, 1] - bbox[2])
points_up = np.copy(points_center)
points_up[:, 1] = bbox[3] + (bbox[3] - points_up[:, 1])
points = np.concatenate((points_center, points_left, points_right, points_down, points_up,), axis=0)
# Compute Voronoi
vor = Voronoi(points)
# Filter regions (center points should* be guaranteed to have a valid region)
# center points should come first and not change in size
regions = [vor.regions[vor.point_region[i]] for i in range(len(points_center))]
vor.filtered_points = points_center
vor.filtered_regions = regions
return vor
#also stolen from: https://stackoverflow.com/questions/28665491/getting-a-bounded-polygon-coordinates-from-voronoi-cells
def area_region(vertices):
# Polygon's signed area
A = 0
for i in range(0, len(vertices) - 1):
s = (vertices[i, 0] * vertices[i + 1, 1] - vertices[i + 1, 0] * vertices[i, 1])
A = A + s
return np.abs(0.5 * A)
def f(x,y):
return np.cos(10*x*y) * np.exp(-x**2 - y**2)
#sampling could easily be shaped to sample origin more heavily
sample_x = np.random.rand(1000) * 10 - 5 #same range as example linspace
sample_y = np.random.rand(1000) - .5
sample_xy = np.array([sample_x, sample_y]).T
vor = square_voronoi(sample_xy, (-5,5,-.5,.5)) #using bbox from samples
points = vor.filtered_points
sample_areas = np.array([area_region(vor.vertices[verts+[verts[0]],:]) for verts in vor.filtered_regions])
sample_z = np.array([f(p[0], p[1]) for p in points])
volume = np.sum(sample_z * sample_areas)
Я точно не проверял это, но принцип должен работать, и математика проверяется.