Введение / установка
Я новичок в программировании, и я сделал свою первую модель CNN из учебника.
Я установил свой jupyter / tenorflow / keras в C: \ Users \ labadmin
Что я понял, так это то, что мне просто нужно указать путь от labadmin для реализации моих данных для тестирования и обучения.
Поскольку я не уверен, что является причиной ошибки, я вставил весь код и ошибку, я думаю, что система не получает данные.
Папка с настройкой данных следующим образом:
У labadmin есть папка data , в которой есть две папки.
обучение и тест
В обеих папках перемешиваются изображения кошек и собак. В каждой папке 10000 картинок, поэтому должно быть достаточно:
Учебник учит.
1. Как создать модель
2. Определите ваши ярлыки
3. Создайте свои тренировочные данные
4. Создание и построение слоев
5. Создайте свои данные тестирования
6. (из того, что я понял) последняя часть кода, которую я создал,
проверка моей модели.
Это код
import cv2
import numpy as np
import os
from random import shuffle
from tqdm import tqdm
TRAIN_DIR = "data\\training"
TEST_DIR = "data\\test"
IMG_SIZE = 50
LR = 1e-3
MODEL_NAME = 'dogvscats-{}-{}.model'.format(LR, '2cov-basic1')
def label_img(img):
word_label = img.split('.')[-3]
if word_label == 'cat': return [1,0]
elif word_label == 'dog': return [0,1]
def creat_train_data():
training_data = []
for img in tqdm(os.listdir(TRAIN_DIR)):
label = label_img(img)
path = os.path.join(TRAIN_DIR,img)
img = cv2.resize(cv2.imread(path, cv2.IMREAD_GRAYSCALE), (IMG_SIZE,IMG_SIZE))
training_data.append([np.array(img), np.array(label)])
shuffle(training_data)
np.save('training.npy', training_data) #save file
return training_data
import tflearn
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.estimator import regression
# Building convolutional convnet
convnet = input_data(shape=[None, IMG_SIZE, IMG_SIZE, 1], name='input')
# http://tflearn.org/layers/conv/
# http://tflearn.org/activations/
convnet = conv_2d(convnet, 32, 2, activation='relu')
convnet = max_pool_2d(convnet, 2)
convnet = conv_2d(convnet, 64, 2, activation='relu')
convnet = max_pool_2d(convnet, 2)
convnet = fully_connected(convnet, 1024, activation='relu')
convnet = dropout(convnet, 0.8)
#OUTPUT layer
convnet = fully_connected(convnet, 2, activation='softmax')
convnet = regression(convnet, optimizer='adam', learning_rate=LR, loss='categorical_crossentropy', name='targets')
model = tflearn.DNN(convnet, tensorboard_dir='log')
def process_test_data():
testing_data = []
for img in tqdm(os.listdir(TEST_DIR)):
path = os.path.join(TEST_DIR,img)
img_num = img.split ('.')[0] #ID of pic=img_num
img = cv2.resize(cv2-imread(path, cv2.IMREAD_GRAYSCALE), (IMG_SIZE,IMG_SIZE))
testing_data.append([np.array(img), img_num])
np.save('test_data.npy', testing_data)
return testing_data
train_data = creat_train_data()
#if you already have train data:
#train_data = np.load('train_data.npy')
100%|███████████████████████████████████████████████████████████████████████████| 21756/21756 [02:39<00:00, 136.07it/s]
if os.path.exists('{}<.meta'.format(MODEL_NAME)):
model.load(MODEL_NAME)
print('model loaded!')
train = train_data[:-500]
test = train_data[:-500]
X = np.array([i[0] for i in train]).reshape( -1, IMG_SIZE, IMG_SIZE, 1) #feature set
Y= [i[1] for i in test] #label
test_x = np.array([i[0] for i in train]).reshape( -1, IMG_SIZE, IMG_SIZE, 1)
test_y= [i[1] for i in test]
model.fit({'input': X}, {'targets': Y}, n_epoch=5, validation_set=({'input': test_x}, {'targets': test_y}),
snapshot_step=500, show_metric=True, run_id=MODEL_NAME)
Training Step: 1664 | total loss: 9.55887 | time: 63.467s
| Adam | epoch: 005 | loss: 9.55887 - acc: 0.5849 -- iter: 21248/21256
Training Step: 1665 | total loss: 9.71830 | time: 74.722s
| Adam | epoch: 005 | loss: 9.71830 - acc: 0.5779 | val_loss: 9.81653 - val_acc: 0.5737 -- iter: 21256/21256
--
Три вопроса
У меня есть три проблемы, которые я пытался решить, но мне не повезло найти решения:
Первое появляется в: # Построение сверточного коннета
curses is not supported on this machine (please install/reinstall curses for an optimal experience)
WARNING:tensorflow:From C:\Users\labadmin\Miniconda3\envs\tensorflow\lib\site-packages\tflearn\initializations.py:119: UniformUnitScaling.__init__ (from tensorflow.python.ops.init_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.initializers.variance_scaling instead with distribution=uniform to get equivalent behavior.
WARNING:tensorflow:From C:\Users\labadmin\Miniconda3\envs\tensorflow\lib\site-packages\tflearn\objectives.py:66: calling reduce_sum (from tensorflow.python.ops.math_ops) with keep_dims is deprecated and will be removed in a future version.
Instructions for updating:
keep_dims is deprecated, use keepdims instead
Второй появляется в: print ('модель загружена!')
if os.path.exists('{}<.meta'.format(MODEL_NAME)):
model.load(MODEL_NAME)
print('model loaded!')
Если код не печатается, значит ли это, что данные не загружаются?
Третий
В учебнике не описывается, как я могу проверить мою модель с изображением. Так как и что я могу добавить к коду, который берет модель (которая также сохраняется) и запускает изображение из моей папки с заданным выводом, являющимся классификацией?