Я пишу код для классификации между двумя типами изображений на основе CNN.Я хочу измерить точность, чувствительность и специфичность своей работы, но, к сожалению, у меня есть следующая ошибка.Не могли бы вы, пожалуйста, дайте мне знать, в чем моя проблема.
m = tf.keras.metrics.SensitivityAtSpecificity(0.5)
model.compile(optimizer='adam', loss=keras.losses.binary_crossentropy, metrics=['accuracy',m])
ошибка:
Traceback (most recent call last):
File "C:/Users/Hamed/PycharmProjects/Deep Learning/CNN.py", line 77, in <module>
validation_steps = 1600//batch_size)
File "C:\Users\Hamed\Anaconda3\envs\tensorflowGPU\lib\site-packages\keras\legacy\interfaces.py", line 91, in wrapper
return func(*args, **kwargs)
File "C:\Users\Hamed\Anaconda3\envs\tensorflowGPU\lib\site-packages\keras\engine\training.py", line 1418, in fit_generator
initial_epoch=initial_epoch)
File "C:\Users\Hamed\Anaconda3\envs\tensorflowGPU\lib\site-packages\keras\engine\training_generator.py", line 217, in fit_generator
class_weight=class_weight)
File "C:\Users\Hamed\Anaconda3\envs\tensorflowGPU\lib\site-packages\keras\engine\training.py", line 1217, in train_on_batch
outputs = self.train_function(ins)
File "C:\Users\Hamed\Anaconda3\envs\tensorflowGPU\lib\site-packages\keras\backend\tensorflow_backend.py", line 2715, in __call__
return self._call(inputs)
File "C:\Users\Hamed\Anaconda3\envs\tensorflowGPU\lib\site-packages\keras\backend\tensorflow_backend.py", line 2675, in _call
fetched = self._callable_fn(*array_vals)
File "C:\Users\Hamed\Anaconda3\envs\tensorflowGPU\lib\site-packages\tensorflow\python\client\session.py", line 1439, in __call__
run_metadata_ptr)
File "C:\Users\Hamed\Anaconda3\envs\tensorflowGPU\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 528, in __exit__
c_api.TF_GetCode(self.status.status))
tensorflow.python.framework.errors_impl.NotFoundError: Resource localhost/false_negatives/class tensorflow::Var does not exist.
[[{{node metrics/sensitivity_at_specificity/AssignAddVariableOp_1}}]]
[[{{node metrics/sensitivity_at_specificity/Mean}}]]