Это пример того, как вы можете использовать CNN с вашими данными
Я все еще не рекомендую этот тип сети для данных, которые у вас есть
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Reshape
import pandas as pd
import numpy as np
## Dummy data
data = {'0': [1, 2, 3], '1': [3, 4, 3], '2':[0,1, 3], '3':[0,1,3], '4':[0,1,3], '5':[0,1,3]}
X_train = pd.DataFrame(data=data)
model = Sequential()
model.add(Reshape((1,X_train.shape[1],1)))
model.add(Conv2D(filters = 32, kernel_size = (1,5),padding = 'Same',
activation ='relu', input_shape = (1,X_train.shape[1],1)))
model.add(MaxPooling2D(pool_size = (1,6), strides=(1,2)))
model.add(Flatten())
model.add(Dense (500, activation='relu'))
model.add(Dense (1, activation='relu'))
model.compile(loss='binary_crossentropy', optimizer='adam',
metrics=['accuracy'])
## Training and testing with dummy data just to prove that it's working
model.fit(np.array(X_train), np.array([0,1,1]), nb_epoch=4, validation_data=(np.array(X_train), np.array([0,1,1])))