Использование DataFrame.stack
с фильтрацией и Index.to_frame
:
s = df.stack()
df = s[s!=0].index.to_frame(index=False).rename(columns={1:'result'})
print (df)
id result
0 0 A
1 0 D
2 1 A
3 1 B
4 2 A
5 2 B
6 2 C
7 3 D
8 5 B
Или, если важна производительность, используйте numpy.where
для индексов по сопоставленным значениям с конструктором DataFrame
:
i, c = np.where(df != 0)
df = pd.DataFrame({'id':df.index.values[i],
'result':df.columns.values[c]})
print (df)
id result
0 0 A
1 0 D
2 1 A
3 1 B
4 2 A
5 2 B
6 2 C
7 3 D
8 5 B
EDIT:
Для первого:
s = df.stack()
df = s[s!=0].reset_index()
df.columns= ['id','result','vals']
print (df)
id result vals
0 0 A 3
1 0 D 1
2 1 A 4
3 1 B 1
4 2 A 1
5 2 B 7
6 2 C 20
7 3 D 4
8 5 B 1
Для второго:
df = pd.DataFrame({'id':df.index.values[i],
'result':df.columns.values[c],
'vals':df.values[i,c]})