Огромное увеличение функции потерь после загрузки модели в Keras, пользовательские данные, тяжелая агментация - PullRequest
0 голосов
/ 09 мая 2019

У меня довольно простая проблема. После того, как я тренирую свою модель в Keras, я использую метод save (filepath), чтобы сохранить мою модель. После этого, когда я хочу продолжить тренировку, я загружаю свою модель, начинаю подбирать модель и прыжки с проигрышем до 420! (примерно из ~ 5), и я не могу понять, почему. Согласно документу Keras, метод save () должен сохранять все данные, архитектуру, состояние оптимизатора и веса.

#preprocessing function
def get_random_eraser(p=0.5, s_l=0.02, s_h=0.4, r_1=0.3, r_2=1/0.3, v_l=0, v_h=255, pixel_level=False):
    def eraser(input_img):
        img_h, img_w, img_c = input_img.shape
        p_1 = np.random.rand()

        if p_1 > p:
            return norm(input_img)

        while True:
            s = np.random.uniform(s_l, s_h) * img_h * img_w
            r = np.random.uniform(r_1, r_2)
            w = int(np.sqrt(s / r))
            h = int(np.sqrt(s * r))
            left = np.random.randint(0, img_w)
            top = np.random.randint(0, img_h)

            if left + w <= img_w and top + h <= img_h:
                break

        if pixel_level:
            c = np.random.uniform(v_l, v_h, (h, w, img_c))
        else:
            c = np.random.uniform(v_l, v_h)

        input_img[top:top + h, left:left + w, :] = c
        input_img = norm(input_img)
        input_img = random_crop(input_img, (50, 50))
        return input_img

    return eraser

def norm(img):
    return img / 127.5 - 1.

def random_crop(img, random_crop_size):
    # Note: image_data_format is 'channel_last'
    assert img.shape[2] == 3
    height, width = img.shape[0], img.shape[1]
    dy, dx = random_crop_size
    x = np.random.randint(0, width - dx + 1)
    y = np.random.randint(0, height - dy + 1)
    crop = img[y:(y+dy), x:(x+dx), :]
    return cv2.resize(crop, (height, width), cv2.INTER_LANCZOS4)

model = mn.MobileNetV2(input_shape=None, alpha=1.0, include_top=False, weights='imagenet', classes=179)
model.summary()
l = model.layers

for layer in l:
    print(layer.get_config(), '\n')
    if 'kernel_regularizer' in layer.get_config():
        print('found kernel regularizer')
        layer.kernel_regularizer=l2(l=0.1)
        print('kernel regularizer', layer.kernel_regularizer)
    if 'bias_regularizer' in layer.get_config():
        print('found kernel regularizer')
        layer.bias_regularizer=l2(l=0.1)
        print('bias regularizer', layer.bias_regularizer)

x = Dropout(0.7)(l[-1].output)
x = Conv2D(179, (1,1), activation='linear')(x)
x = ReLU()(x)
x = GlobalAveragePooling2D()(x)
x = Softmax()(x)
model_mod = Model(inputs=model.input, outputs=x)

gen_t = ImageDataGenerator(
                        horizontal_flip=True,
                        vertical_flip=True,
                        rotation_range=45,
                        width_shift_range=0.3,
                        height_shift_range=0.3,
                        shear_range = 0.3,
                        zoom_range = 0.3,
                        preprocessing_function=get_random_eraser(s_l=0, s_h=0.8),
                        validation_split=0.1
)
gen_v = ImageDataGenerator(
                        preprocessing_function=norm,
                        validation_split=0.1
)

early_stop = EarlyStopping(patience=10, restore_best_weights=True, verbose=True)
tb = TensorBoard(batch_size=32)
mc = ModelCheckpoint('mobilenetv2_combined.hdf5', monitor='val_loss', save_best_only=True, verbose=True)

train_generator = gen_t.flow_from_directory(os.path.join(DATA_FOLDER_PATH, 'data_mod', 'train'), target_size=(256, 256), batch_size=32, subset="training")

validation_generator = gen_v.flow_from_directory(os.path.join(DATA_FOLDER_PATH, 'data_mod', 'train'), target_size=(256, 256), batch_size=32, subset="validation")

class_weights = class_weight.compute_class_weight('balanced', np.unique(train_generator.classes), train_generator.classes)
model_mod.compile(k.optimizers.sgd(lr=0.001, momentum=0.9, nesterov=True), loss='categorical_crossentropy', metrics=['accuracy', 'top_k_categorical_accuracy'])

hist = model_mod.fit_generator(train_generator,validation_data=validation_generator, epochs=1, initial_epoch=0, callbacks=[early_stop, tb, mc], class_weight=class_weights)
model_mod.save('mobilenet_model_save.h5')

Found 17924 images belonging to 179 classes.
Found 1910 images belonging to 179 classes.
Epoch 1/1
561/561 [==============================] - 415s 741ms/step - loss: 4.9594 - acc: 0.0322 - top_k_categorical_accuracy: 0.1134 - val_loss: 4.4137 - val_acc: 0.0921 - val_top_k_categorical_accuracy: 0.2644

Epoch 00001: val_loss improved from inf to 4.41366, saving model to mobilenetv2_combined.hdf5

Так что это код, который я использую для обучения. Теперь в основном тот же код для продолжения обучения (это только для иллюстрации):

gen_t = ImageDataGenerator(
                        horizontal_flip=True,
                        vertical_flip=True,
                        rotation_range=45,
                        width_shift_range=0.3,
                        height_shift_range=0.3,
                        shear_range = 0.3,
                        zoom_range = 0.3,
                        preprocessing_function=get_random_eraser(s_l=0, s_h=0.8),
                        validation_split=0.1
)
gen_v = ImageDataGenerator(
                        preprocessing_function=norm,
                        validation_split=0.1
)
early_stop = EarlyStopping(patience=10, restore_best_weights=True, verbose=True)
tb = TensorBoard(batch_size=32)
mc = ModelCheckpoint('mobilenetv2_combined.hdf5', monitor='val_loss', save_best_only=True, verbose=True)

train_generator = gen_t.flow_from_directory(os.path.join(DATA_FOLDER_PATH, 'data_mod', 'train'), target_size=(256, 256), batch_size=32, subset="training")

validation_generator = gen_v.flow_from_directory(os.path.join(DATA_FOLDER_PATH, 'data_mod', 'train'), target_size=(256, 256), batch_size=32, subset="validation")

model_mod = load_model('mobilenet_model_save.h5')

class_weights = class_weight.compute_class_weight('balanced', np.unique(train_generator.classes), train_generator.classes)
#model_mod.compile(adam(lr=0.0001, decay=1e-6), loss='categorical_crossentropy', metrics=['accuracy', 'top_k_categorical_accuracy'])
model_mod.compile(k.optimizers.sgd(lr=0.001, momentum=0.9, nesterov=True), loss='categorical_crossentropy', metrics=['accuracy', 'top_k_categorical_accuracy'])

hist = model_mod.fit_generator(train_generator,validation_data=validation_generator, epochs=2, initial_epoch=1, callbacks=[early_stop, tb, mc], class_weight=class_weights)
model_mod.save('mobilenet_model_save.h5')
Found 17924 images belonging to 179 classes.
Found 1910 images belonging to 179 classes.
Epoch 2/2
561/561 [==============================] - 373s 665ms/step - loss: 174.3220 - acc: 0.0815 - top_k_categorical_accuracy: 0.2320 - val_loss: 49.8441 - val_acc: 0.0110 - val_top_k_categorical_accuracy: 0.0455

Epoch 00002: val_loss improved from inf to 49.84411, saving model to mobilenetv2_combined.hdf5

Кто-нибудь знает, что происходит? Я попробовал очень простой пример с MNIST, и все, кажется, работает нормально. Я буду рад любому предложению. Еще одна интересная вещь, это просто значение функции потерь. Точность сети остается такой же, как после обучения, например, после тренировки сеть заканчивает с точностью до 40%, а когда я возобновляю тренировку (с огромным скачком потерь), точность все равно остается 40%.

1 Ответ

0 голосов
/ 20 мая 2019

Так что я не понял этого, но я предполагаю, что это либо проблема с сохранением типа «нестандартной» (из модуля приложения) проблемы с сетью, либо из-за использования более старой версии 2.2.0 (из-за ошибки squeezenet).

Я сомневаюсь, что этому вопросу будет уделено больше внимания, чем за последние 10 дней, поэтому я закрываю вопрос.

Моим «решением» было обучение сети за один раз, без перерыва.

...