Я разрабатываю систему для аудио тегов общего назначения с использованием керас.
У меня есть следующие данные: x_train имеет 10 разных данных для каждого входа (data_leng, max, min и т. Д.), А y_train представляет 41 возможную метку (гитара, бас и т. Д.)
x_train shape = (7104, 10)
y_train shape = (41,)
print(x_train[0])
[ 3.75732000e+05 -2.23437546e-05 -1.17187500e-02 1.30615234e-02
2.65964586e-03 2.65973969e-03 9.80024859e-02 1.13624850e+00
1.00003528e+00 -1.11458333e+00]
print(y_train[0])
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]
Моя модель:
from keras.models import Sequential
from keras.optimizers import SGD
from keras.layers import Dense, Dropout, Activation
model = Sequential()
model.add(Dense(units=128, activation='relu', input_dim=10))
model.add(Dropout(0.5))
model.add(Dense(units=64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(units=32, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(41, activation='softmax'))
opt = SGD(lr=0.0001, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
model.fit(np.array(x_train), np.array(y_train), epochs=5, batch_size=8)
Это мой результат:
Epoch 1/5
7104/7104 [==============================] - 1s 179us/step - loss: 15.7392 - acc: 0.0235
Epoch 2/5
7104/7104 [==============================] - 1s 132us/step - loss: 15.7369 - acc: 0.0236
Epoch 3/5
7104/7104 [==============================] - 1s 133us/step - loss: 15.7415 - acc: 0.0234
Epoch 4/5
7104/7104 [==============================] - 1s 132us/step - loss: 15.7262 - acc: 0.0242
Epoch 5/5
7104/7104 [==============================] - 1s 132us/step - loss: 15.6484 - acc: 0.0291
Как вы видите, мои результаты показывают очень высокую потерю данных и очень низкую точность, но главная проблема заключается в том, чтокогда я пытаюсь предсказать результат, причина для каждого входа - то же самое.Как я могу это исправить ?
pre = model.predict(np.array(x_train), batch_size=8, verbose=0)
for i in pre:
print(i)
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
...