einsum
, кажется, работает:
>>> a = np.random.random((60,60))
>>> b = np.random.random((60,60))
>>> ab = np.kron(a,b)
>>> abe = np.einsum('ik,jl', a, b).reshape(3600,3600)
>>> (abe==ab).all()
True
>>> timeit(lambda: np.kron(a, b), number=10)
1.0697475590277463
>>> timeit(lambda: np.einsum('ik,jl', a, b).reshape(3600,3600), number=10)
0.42500176999601535
Простое вещание еще быстрее:
>>> abb = (a[:, None, :, None]*b[None, :, None, :]).reshape(3600,3600)
>>> (abb==ab).all()
True
>>> timeit(lambda: (a[:, None, :, None]*b[None, :, None, :]).reshape(3600,3600), number=10)
0.28011218502069823
ОБНОВЛЕНИЕ: Используя blas и cython, мы можем получить еще одно умеренное (30%) ускорение. Решите сами, стоит ли это хлопот.
[setup.py]
from distutils.core import setup
from Cython.Build import cythonize
setup(name='kronecker',
ext_modules=cythonize("cythkrn.pyx"))
[cythkrn.pyx]
import cython
cimport scipy.linalg.cython_blas as blas
import numpy as np
@cython.boundscheck(False)
@cython.wraparound(False)
def kron(double[:, ::1] a, double[:, ::1] b):
cdef int i = a.shape[0]
cdef int j = a.shape[1]
cdef int k = b.shape[0]
cdef int l = b.shape[1]
cdef int onei = 1
cdef double oned = 1
cdef int m, n
result = np.zeros((i*k, j*l), float)
cdef double[:, ::1] result_v = result
for n in range(i):
for m in range(k):
blas.dger(&l, &j, &oned, &b[m, 0], &onei, &a[n, 0], &onei, &result_v[m+k*n, 0], &l)
return result
Для сборки запустить cython cythkrn.pyx
, а затем python3 setup.py build
.
>>> from timeit import timeit
>>> import cythkrn
>>> import numpy as np
>>>
>>> a = np.random.random((60,60))
>>> b = np.random.random((60,60))
>>>
>>> np.all(cythkrn.kron(a, b)==np.kron(a, b))
True
>>>
>>> timeit(lambda: cythkrn.kron(a, b), number=10)
0.18925874299020506