Если я правильно понимаю ваш вопрос, вот более быстрая альтернатива, без каких-либо петель:
# sample `n`
In [108]: n = 2
# sample tensor to work with
In [102]: A = torch.arange(start=1, end=5*4 + 1).view(5, -1)
In [103]: A
Out[103]:
tensor([[ 1, 2, 3, 4],
[ 5, 6, 7, 8],
[ 9, 10, 11, 12],
[13, 14, 15, 16],
[17, 18, 19, 20]])
# our target tensor where we will copy values
# we need to multiply `n` by 2 since there are two axes
In [104]: B = torch.zeros(A.shape[0] + 2*n, A.shape[1] + 2*n)
# copy the values, at the center of the grid
# leaving `n` positions on the surrounding
In [106]: B[n:-n, n:-n] = A
# check whether we did it correctly
In [107]: B
Out[107]:
tensor([[ 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 1., 2., 3., 4., 0., 0.],
[ 0., 0., 5., 6., 7., 8., 0., 0.],
[ 0., 0., 9., 10., 11., 12., 0., 0.],
[ 0., 0., 13., 14., 15., 16., 0., 0.],
[ 0., 0., 17., 18., 19., 20., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0.]])
Другой случай, когда n=3
In [118]: n = 3
# we need to multiply `n` by 2 since there are two axes
In [119]: B = torch.zeros(A.shape[0] + 2*n, A.shape[1] + 2*n)
# copy the values, at the center of the grid
# leaving `n` positions on the surrounding
In [120]: B[n:-n, n:-n] = A
In [121]: B
Out[121]:
tensor([[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 1., 2., 3., 4., 0., 0., 0.],
[ 0., 0., 0., 5., 6., 7., 8., 0., 0., 0.],
[ 0., 0., 0., 9., 10., 11., 12., 0., 0., 0.],
[ 0., 0., 0., 13., 14., 15., 16., 0., 0., 0.],
[ 0., 0., 0., 17., 18., 19., 20., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
проверка работоспособности с вашим решением на основе loop
:
In [122]: n = 2
In [123]: B = torch.zeros(A.shape[0] + 2*n, A.shape[1] + 2*n)
In [124]: for i in range(A.shape[0]):
...: for j in range(A.shape[1]):
...: B[n+i][n+j] = A[i][j]
...:
In [125]: B
Out[125]:
tensor([[ 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 1., 2., 3., 4., 0., 0.],
[ 0., 0., 5., 6., 7., 8., 0., 0.],
[ 0., 0., 9., 10., 11., 12., 0., 0.],
[ 0., 0., 13., 14., 15., 16., 0., 0.],
[ 0., 0., 17., 18., 19., 20., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0.]])
время :
# large sized input tensor
In [126]: A = torch.arange(start=1, end=5000*4 + 1).view(5000, -1)
In [127]: n = 2
In [132]: B = torch.zeros(A.shape[0] + 2*n, A.shape[1] + 2*n)
# loopy solution
In [133]: %%timeit
...: for i in range(A.shape[0]):
...: for j in range(A.shape[1]):
...: B[n+i][n+j] = A[i][j]
...:
92.1 ms ± 434 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
# clear out `B` again by reinitializing it.
In [128]: B = torch.zeros(A.shape[0] + 2*n, A.shape[1] + 2*n)
In [129]: %timeit B[n:-n, n:-n] = A
49.6 µs ± 239 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
Из приведенных выше моментов мы можем видеть, что векторизованный подход на ~ 200x
быстрее, чем решение на основе цикла.