В настоящее время я работаю с числовыми данными, используя DL Neural Networks.Для этой цели я использую библиотеку Keras, CSV содержит 912 Кб, как показано ниже:
p u d ms action B x y-c pre area finger
0 0 36 3 1334893336790 0 1 262 262 262 0.044444 0.0
1 0 36 3 1334893336790 2 1 262 271 0.32 0.044444 0.0
2 0 36 3 1334893336795 2 1 123 327 0.28 0.044444 0.0
3 0 36 3 1334893336800 1 1 123 327 0.28 0.044444 0.0
4 0 36 3 1334893336885 0 1 216 298 0.34 0.044444 0.0
5 0 36 3 1334893336907 2 1 216 298 0.38 0.044444 0.0
6 0 36 3 1334893336926 2 1 147 312 0.60 0.088889 0.0
7 0 36 3 1334893336949 2 1 115 328 0.63 0.044444 0.0
8 0 36 3 1334893336952 2 1 98 336 0.17 0.133333 0.0
9 0 36 3 1334893336971 1 1 98 336 0.17 0.133333 0.0
1 0 36 3 1334893337798 0 1 108 339 0.48 0.044444 0.0
, как я понимаю, входы нейронной сети располагаются построчно, здесь я пытаюсь сделать ввод и вывод на основе столбец действия , например, когда он начинается с 0 и заканчивается 1 , затем включается первый вход для нейронной сети из строки [0–3] 3 и второй вход[4–9] 9 включен и т. д., я пробовал это много раз, но он не работает со мной
#o = no_of_click
o=0
lenf=len(dataset)
for h in dataset.index[dataset.iloc[:, 4] == 0]:
if dataset.iloc[h+1,4]==1 :
dataset.iloc[h+1,4]=-1
dataset.iloc[h , 4] = -1
o=o+1
dataset=dataset.drop(dataset[dataset.iloc[:, 4] == -1].index)
lenf=(o*2)
X = dataset.iloc[:, 2:].values #here 3to 11 for x
y = dataset.iloc[:, 1].values #here user id 2 only y
binariz = LabelBinarizer()
s = binariz.fit_transform(X[:, 0])
X = np.delete(X, [0], axis=1)
X = np.hstack([s,X])
y = binariz.fit_transform(y)
# X Features scaling
sc_X = StandardScaler()
X = sc_X.fit_transform(X)
# Splitting Data
X_train, X_test,y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
classifier = Sequential()
# Adding the input layer and the first hidden layer
classifier.add(Dense(units = 50, activation = 'relu', input_dim = X_train.shape[1]))
# Adding the second hidden layer
classifier.add(Dense(units = 50, activation = 'relu'))
# Adding the output layer
classifier.add(Dense(units = y.shape[1], activation = 'softmax'))
# Compiling the ANN
classifier.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy'])
# Fitting the ANN to the Training set
classifier.fit(X_train, y_train, batch_size = 100, epochs = 10)