Я пытался запустить код ниже
import math
import random
from matplotlib import pyplot as plt
from collections import Counter
def bucketize(point,bucket_size):
return bucket_size * math.floor(point/bucket_size)
def make_histogram(points, bucket_size):
return Counter(bucketize(point,bucket_size) for point in points)
def plot_histogram(points,bucket_size,title=""):
histogram = make_histogram(points,bucket_size)
plt.bar(histogram.keys(),histogram.values(),width=bucket_size)
plt.title(title)
plt.show()
def inverse_normalCDF(p,miu=0,sigma=1,tolerance=0.00001):
if miu !=0 or sigma !=1:
return miu + sigma * inverse_normalCDF(p,tolerance=tolerance)
low_z,low_p = -10.0,0
hi_z,hi_p = 10.0,1
while hi_z - low_z > tolerance:
mid_z = (low_z + hi_z)/2
mid_p = normalCDF(mid_z)
if mid_p > p:
low_z,low_p = mid_z,mid_p
elif mid_p > p:
hi_z, hi_p = mid_z,mid_p
else:
break
return mid_z
def normalCDF(x,miu=0,sigma=1):
return (1+math.erf((x-miu)/math.sqrt(2)/sigma))/2
random.seed(0)
#uniform = [200*random.random()-100 for _ in range (10000)]
#plot_histogram(uniform,10,"uniform histogram")
normal = [57 * inverse_normalCDF(random.random() for _ in range(10000))]
plot_histogram(normal,10,"normal histogram")
но программа выдает ошибку «RecursionError: превышена максимальная глубина рекурсии в сравнении», что мне следует сделать, чтобы исправить RecursionError, поскольку она влияет на функцию inverse_normalCDF?
Ошибка больше не показывает максимальную глубину рекурсии, превышенную в функции, вместо
Traceback (most recent call last):
File "C:\Users\asus\Documents\Sublime\dataScience\normalHistogram.py", line 41, in <module>
normal = [57 * inverse_normalCDF(random.random() for _ in range(10000))]
File "C:\Users\asus\Documents\Sublime\dataScience\normalHistogram.py", line 26, in inverse_normalCDF
if mid_p > p:
TypeError: '>' not supported between instances of 'float' and 'generator'
[Finished in 0.7s]
Используемая версия pyhton - 3.7, а версия matplotlib, которую я использую - 3.0.3
.
* обновление, изменено
def inverse_normalCDF (p, miu = 0, сигма = 1, допуск = 0,00001):
исправить некоторые опечатки в коде