Я получаю следующую ошибку при попытке подгонки моей модели к тренировке: Не могу сжать тусклое [2], ожидаемое измерение 1, получило 9 [Op: Squeeze]
Модель запускается для отдельной выборочной партии, но выдает ошибку, когда я пытаюсь уместить весь набор данных
batch_size = 64
vocab_size = 42
embedding_dim = 256
rnn_units = 1024
steps_per_epoch = examples_per_epoch//BATCH_SIZE
model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=(64,900),batch_input_shape=[batch_size, None]),
tf.keras.layers.Embedding(vocab_size, embedding_dim,
batch_input_shape=[batch_size, None]),
rnn(rnn_units,
return_sequences=True,
recurrent_initializer='glorot_uniform',
stateful=True),
tf.keras.layers.Dense(vocab_size),
])
model.compile(
optimizer = tf.train.AdamOptimizer(),
loss = tf.losses.sparse_softmax_cross_entropy)
model.fit(dataset.repeat(), epochs=EPOCHS, steps_per_epoch=steps_per_epoch, callbacks=[checkpoint_callback])
каждый пакетный ввод имел следующую форму (64,100,9)
Я подозреваю, что проблема где-то внутри и около того, где я исправил это.
tf.keras.layers.Flatten(input_shape=(64,900),batch_input_shape=[batch_size, None]),
Любые предложения будут с благодарностью, спасибо