Доступ к 18 месяцам ежедневных данных составляет 549 точек данных.Хотите создать прогноз на следующие 90 дней
scaler = MinMaxScaler(feature_range=(-1, 1))
dataset = scaler.fit_transform(daily_data)
train, test = dataset[:365], dataset[365:len(dataset),:]
def create_dataset(dataset, look_back=1):
dataX, dataY = [], []
for i in range(len(dataset)-look_back-1):
a = dataset[i:(i+look_back), 0]
dataX.append(a)
dataY.append(dataset[i + look_back, 0])
return numpy.array(dataX), numpy.array(dataY)
look_back = 1
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)
trainX = numpy.reshape(trainX, (trainX.shape[0], 1,
trainX.shape[1]))
testX = numpy.reshape(testX, (testX.shape[0], 1, testX.shape[1]))
# Define the LSTM model
model = Sequential()
model.add(LSTM(150, input_shape=(1, look_back)))
model.add(Dropout(0.5))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(trainX, trainY, epochs=150, batch_size=1, verbose=2)
# make predictions
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)
# invert predictions
trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform([trainY])
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform([testY])
# calculate root mean squared error
trainScore = math.sqrt(mean_squared_error(trainY[0],
trainPredict[:,0]))
print('Train Score: %.2f RMSE' % (trainScore))
testScore = math.sqrt(mean_squared_error(testY[0],
testPredict[:,0]))
print('Test Score: %.2f RMSE' % (testScore))
Я попытался сгенерировать следующие 90 временных шагов, используя следующий код:
def moving_test_window_preds(n_future_preds):
preds_moving = []
moving_test_window = [testX[0,:].tolist()]
moving_test_window = np.array(moving_test_window)
for i in range(n_future_preds):
preds_one_step = model.predict(moving_test_window)
preds_moving.append(preds_one_step[0,0])
preds_one_step = preds_one_step.reshape(1,1,1)
moving_test_window =np.concatenate((moving_test_window[:,1:,:],
preds_one_step), axis=1)
preds_moving = scaler.inverse_transform([preds_moving])
return preds_moving
Однако я предполагаю, что это неправильный способСделай так.Я попытался сослаться на статью:
https://machinelearningmastery.com/how-to-develop-lstm-models-for-multi-step-time-series-forecasting-of-household-power-consumption/
Я новичок в области глубокого обучения, особенно в области LSTM.Было бы здорово, если бы кто-нибудь смог помочь.