Я использую следующий код для создания списка комбинаций размера s:
public static <T extends Comparable<? super T>> List<List<T>> combinations(List<T> items, int size) {
if (size == 1) {
List<List<T>> result = new ArrayList<>();
for (T item : items) {
result.add(Collections.singletonList(item));
}
return result ;
}
List<List<T>> result = new ArrayList<>();
for (int i=0; i <= items.size() - size; i++) {
T firstItem = items.get(i);
List<List<T>> additionalItems = combinations(items.subList(i+1, items.size()), size-1) ;
for (List<T> additional : additionalItems) {
List<T> combination = new ArrayList<>();
combination.add(firstItem);
combination.addAll(additional);
result.add(combination);
}
}
return result ;
}
Дан список со значениями 1, 2 and 3
с размером 2
:
List<Integer> items = new ArrayList<Integer>();
items.add(1);
items.add(2);
items.add(3);
combinations(items, 2)
Это приводит к следующим комбинациям:
[1, 2]
[1, 3]
[2, 3]
Я пытаюсь взять этот вывод и сгенерировать 3-й список, где каждая из трех строк из предыдущего вывода теперь объединяется с каждой другой строкой -только этот порядок чувствителен к времени и имеет глубину 'd' .Я ожидаю результатов, подобных следующему:
1 уровень глубины:
[1, 2]
[1, 3]
[2, 3]
2 уровня глубины:
[1, 2], [1, 3]
[1, 2], [2, 3]
[1, 3], [2, 3]
[1, 3], [1, 2]
[2, 3], [1, 2]
[2, 3], [1, 3]
3 уровня глубины:
[[1, 2], [1, 2], [1, 3]]
[[1, 2], [1, 2], [2, 3]]
[[1, 2], [1, 3], [1, 2]]
[[1, 2], [1, 3], [1, 3]]
[[1, 2], [1, 3], [2, 3]]
[[1, 2], [2, 3], [1, 2]]
[[1, 2], [2, 3], [1, 3]]
[[1, 2], [2, 3], [2, 3]]
[[1, 3], [1, 2], [1, 2]]
[[1, 3], [1, 2], [1, 3]]
[[1, 3], [1, 2], [2, 3]]
[[1, 3], [1, 3], [1, 2]]
[[1, 3], [1, 3], [2, 3]]
[[1, 3], [2, 3], [1, 2]]
[[1, 3], [2, 3], [1, 3]]
[[1, 3], [2, 3], [2, 3]]
[[2, 3], [1, 2], [1, 2]]
[[2, 3], [1, 2], [1, 3]]
[[2, 3], [1, 2], [2, 3]]
[[2, 3], [1, 3], [1, 2]]
[[2, 3], [1, 3], [1, 3]]
[[2, 3], [1, 3], [2, 3]]
[[2, 3], [2, 3], [1, 2]]
[[2, 3], [2, 3], [1, 3]]
4 уровня глубины:
[[1, 2], [1, 2], [1, 2], [1, 3]]
[[1, 2], [1, 2], [1, 2], [2, 3]]
[[1, 2], [1, 2], [1, 3], [1, 2]]
[[1, 2], [1, 2], [1, 3], [1, 3]]
[[1, 2], [1, 2], [1, 3], [2, 3]]
[[1, 2], [1, 2], [2, 3], [1, 2]]
[[1, 2], [1, 2], [2, 3], [1, 3]]
[[1, 2], [1, 2], [2, 3], [2, 3]]
[[1, 2], [1, 3], [1, 2], [1, 2]]
[[1, 2], [1, 3], [1, 2], [1, 3]]
[[1, 2], [1, 3], [1, 2], [2, 3]]
[[1, 2], [1, 3], [1, 3], [1, 2]]
[[1, 2], [1, 3], [1, 3], [1, 3]]
[[1, 2], [1, 3], [1, 3], [2, 3]]
[[1, 2], [1, 3], [2, 3], [1, 2]]
[[1, 2], [1, 3], [2, 3], [1, 3]]
[[1, 2], [1, 3], [2, 3], [2, 3]]
[[1, 2], [2, 3], [1, 2], [1, 2]]
[[1, 2], [2, 3], [1, 2], [1, 3]]
[[1, 2], [2, 3], [1, 2], [2, 3]]
[[1, 2], [2, 3], [1, 3], [1, 2]]
[[1, 2], [2, 3], [1, 3], [1, 3]]
[[1, 2], [2, 3], [1, 3], [2, 3]]
[[1, 2], [2, 3], [2, 3], [1, 2]]
[[1, 2], [2, 3], [2, 3], [1, 3]]
[[1, 2], [2, 3], [2, 3], [2, 3]]
[[1, 3], [1, 2], [1, 2], [1, 2]]
[[1, 3], [1, 2], [1, 2], [1, 3]]
[[1, 3], [1, 2], [1, 2], [2, 3]]
[[1, 3], [1, 2], [1, 3], [1, 2]]
[[1, 3], [1, 2], [1, 3], [1, 3]]
[[1, 3], [1, 2], [1, 3], [2, 3]]
[[1, 3], [1, 2], [2, 3], [1, 2]]
[[1, 3], [1, 2], [2, 3], [1, 3]]
[[1, 3], [1, 2], [2, 3], [2, 3]]
[[1, 3], [1, 3], [1, 2], [1, 2]]
[[1, 3], [1, 3], [1, 2], [1, 3]]
[[1, 3], [1, 3], [1, 2], [2, 3]]
[[1, 3], [1, 3], [1, 3], [1, 2]]
[[1, 3], [1, 3], [1, 3], [2, 3]]
[[1, 3], [1, 3], [2, 3], [1, 2]]
[[1, 3], [1, 3], [2, 3], [1, 3]]
[[1, 3], [1, 3], [2, 3], [2, 3]]
[[1, 3], [2, 3], [1, 2], [1, 2]]
[[1, 3], [2, 3], [1, 2], [1, 3]]
[[1, 3], [2, 3], [1, 2], [2, 3]]
[[1, 3], [2, 3], [1, 3], [1, 2]]
[[1, 3], [2, 3], [1, 3], [1, 3]]
[[1, 3], [2, 3], [1, 3], [2, 3]]
[[1, 3], [2, 3], [2, 3], [1, 2]]
[[1, 3], [2, 3], [2, 3], [1, 3]]
[[1, 3], [2, 3], [2, 3], [2, 3]]
[[2, 3], [1, 2], [1, 2], [1, 2]]
[[2, 3], [1, 2], [1, 2], [1, 3]]
[[2, 3], [1, 2], [1, 2], [2, 3]]
[[2, 3], [1, 2], [1, 3], [1, 2]]
[[2, 3], [1, 2], [1, 3], [1, 3]]
[[2, 3], [1, 2], [1, 3], [2, 3]]
[[2, 3], [1, 2], [2, 3], [1, 2]]
[[2, 3], [1, 2], [2, 3], [1, 3]]
[[2, 3], [1, 2], [2, 3], [2, 3]]
[[2, 3], [1, 3], [1, 2], [1, 2]]
[[2, 3], [1, 3], [1, 2], [1, 3]]
[[2, 3], [1, 3], [1, 2], [2, 3]]
[[2, 3], [1, 3], [1, 3], [1, 2]]
[[2, 3], [1, 3], [1, 3], [1, 3]]
[[2, 3], [1, 3], [1, 3], [2, 3]]
[[2, 3], [1, 3], [2, 3], [1, 2]]
[[2, 3], [1, 3], [2, 3], [1, 3]]
[[2, 3], [1, 3], [2, 3], [2, 3]]
[[2, 3], [2, 3], [1, 2], [1, 2]]
[[2, 3], [2, 3], [1, 2], [1, 3]]
[[2, 3], [2, 3], [1, 2], [2, 3]]
[[2, 3], [2, 3], [1, 3], [1, 2]]
[[2, 3], [2, 3], [1, 3], [1, 3]]
[[2, 3], [2, 3], [1, 3], [2, 3]]
[[2, 3], [2, 3], [2, 3], [1, 2]]
[[2, 3], [2, 3], [2, 3], [1, 3]]
Обратите внимание, как на 2 уровнях глубинакомбинация [1, 2], [1, 2]
не генерируется, так как между, до или после этого набора нет набора различных чисел.Однако на глубине 3 уровней мы генерируем комбинацию [1, 2], [1, 3], [1, 2]
, поскольку комбинация [1, 3]
присутствует между двумя парами [1, 2]
.
Аналогично, на 4-х уровнях глубины мы генерируем последовательность [1, 2], [1, 3], [1, 2], [1, 2]
, которая не эквивалентна последовательности [1, 2], [1, 3], [1, 2]
, поскольку после [1, 2], [1, 3], [1, 2]
есть дополнительная последовательность [1, 2]
.Мы не генерируем последовательность [1, 2], [1, 2], [1, 2], [1, 2]
на 4 уровнях глубиной, так как эта комбинация по существу эквивалентна [1, 2]
, потому что нет нового набора чисел между, до или после комбинации [1, 2]
.
Короче говоря, как мне объединить список списков чисел - вплоть до любого количества уровней в глубину (1-4 просто использовался в качестве примера), но на этот раз результат был чувствительным к порядку (так что [1, 2], [1, 3]
не эквивалентно [1, 3], [1, 2]
)?Результат, скорее всего, будет сохранен в List<List<List<Integer>>>
.
. Я искал в StackOverflow и видел несколько потоков по созданию комбинаций (таких как этот и этот), но не указали точную ситуацию, описанную выше.
Спасибо