Распознать текст (как цифры, так и символы) из изображения - PullRequest
0 голосов
/ 07 июня 2019

Я пытаюсь распознать текст с картинки. Один из наборов данных, который содержит данные обучения для обоих, - это Emnist. Документация: Документация EMNIST . Я тренирую нейронную сеть, чтобы сделать работу. Код выглядит следующим образом

from emnist import extract_training_samples
x_train,y_train = extract_training_samples('balanced')

from emnist import extract_test_samples
x_test,y_test = extract_test_samples('balanced')

batch_size = 128
num_classes = 47
epochs = 6

# input image dimensions
img_rows, img_cols = 28, 28

if K.image_data_format() == 'channels_first':
    x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
    x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
    input_shape = (1, img_rows, img_cols)
else:
    x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
    input_shape = (img_rows, img_cols, 1)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
                 activation='relu',
                 input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

model.compile(loss=keras.losses.categorical_crossentropy,
              optimizer=keras.optimizers.Adadelta(),
              metrics=['accuracy'])

model.summary()
checkpoint = ModelCheckpoint('OCR.h5', monitor='val_acc', verbose=1, save_best_only=True, mode='max')
callbacks_list = [checkpoint]
model.fit(x_train, y_train,
          batch_size=batch_size,
          epochs=epochs,
          verbose=1,
          validation_data=(x_test, y_test), callbacks=callbacks_list)
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

Однако, когда эта модель используется для прогнозирования алфавитов с помощью метода findContour в opencv путем создания ограничивающих рамок, она не справляется с этой задачей. Например этот образец изображения

Sample Image

Он может только предсказывать числа. Пожалуйста, предложите мне альтернативный набор данных для обучения или подскажите, что я могу сделать, чтобы преобразовать этот вид изображения в текст.

...