можно ли вернуть информацию о ребре / узле в python после рендеринга в боке? - PullRequest
2 голосов
/ 16 апреля 2019

Я использовал этот код для рисования сетевой диаграммы. до сих пор я видел способы изменения атрибутов графика при щелчке или наведении курсора. но теперь я хочу записать информацию об объекте при нажатии например: если я нажму на ребро, я хочу вернуть в python детали ребра для некоторой обработки.

import networkx as nx

from bokeh.io import show, output_file
from bokeh.models import Plot, Range1d, MultiLine, Circle, HoverTool, TapTool, BoxSelectTool
from bokeh.models.graphs import from_networkx, NodesAndLinkedEdges, EdgesAndLinkedNodes
from bokeh.palettes import Spectral4

G=nx.karate_club_graph()

plot = Plot(plot_width=400, plot_height=400,
            x_range=Range1d(-1.1,1.1), y_range=Range1d(-1.1,1.1))
plot.title.text = "Graph Interaction Demonstration"

plot.add_tools(HoverTool(tooltips=None), TapTool(), BoxSelectTool())

graph_renderer = from_networkx(G, nx.circular_layout, scale=1, center=(0,0))

graph_renderer.node_renderer.glyph = Circle(size=15, fill_color=Spectral4[0])
graph_renderer.node_renderer.selection_glyph = Circle(size=15, fill_color=Spectral4[2])
graph_renderer.node_renderer.hover_glyph = Circle(size=15, fill_color=Spectral4[1])

graph_renderer.edge_renderer.glyph = MultiLine(line_color="#CCCCCC", line_alpha=0.8, line_width=5)
graph_renderer.edge_renderer.selection_glyph = MultiLine(line_color=Spectral4[2], line_width=5)
graph_renderer.edge_renderer.hover_glyph = MultiLine(line_color=Spectral4[1], line_width=5)

graph_renderer.selection_policy = NodesAndLinkedEdges()
graph_renderer.inspection_policy = EdgesAndLinkedNodes()

plot.renderers.append(graph_renderer)

output_file("interactive_graphs.html")
show(plot)

1 Ответ

0 голосов
/ 16 апреля 2019

Этот код использует функцию обратного вызова TapTool для отображения выбранных индексов и начальных / конечных узлов для выбранных ребер (сначала нажмите на узел, чтобы сделать выбор). Код работает для Bokeh v1.1.0

import networkx as nx

from bokeh.io import show, output_file
from bokeh.models import Plot, Range1d, MultiLine, Circle, HoverTool, TapTool, BoxSelectTool, CustomJS, Column, TextInput
from bokeh.models.graphs import from_networkx, NodesAndLinkedEdges, EdgesAndLinkedNodes
from bokeh.palettes import Spectral4
from bokeh.models.widgets.inputs import TextInput

G = nx.karate_club_graph()

plot = Plot(plot_width = 400, plot_height = 400,
            x_range = Range1d(-1.1, 1.1), y_range = Range1d(-1.1, 1.1))
plot.title.text = "Graph Interaction Demonstration"

plot.add_tools(HoverTool(tooltips = [('index', '$index'), ('start', '@start'), ('end', '@end')]), TapTool(), BoxSelectTool())

graph_renderer = from_networkx(G, nx.circular_layout, scale = 1, center = (0, 0))

graph_renderer.node_renderer.glyph = Circle(size = 15, fill_color = Spectral4[0])
graph_renderer.node_renderer.selection_glyph = Circle(size = 15, fill_color = Spectral4[2])
graph_renderer.node_renderer.hover_glyph = Circle(size = 15, fill_color = Spectral4[1])

graph_renderer.edge_renderer.glyph = MultiLine(line_color = "#CCCCCC", line_alpha = 0.8, line_width = 5)
graph_renderer.edge_renderer.selection_glyph = MultiLine(line_color = Spectral4[2], line_width = 5)
graph_renderer.edge_renderer.hover_glyph = MultiLine(line_color = Spectral4[1], line_width = 5)

graph_renderer.selection_policy = NodesAndLinkedEdges()
graph_renderer.inspection_policy = EdgesAndLinkedNodes()

plot.renderers.append(graph_renderer)

info_indices = TextInput(title = 'Selected indices:', value = '')
info_start_end = TextInput(title = 'Start => End Values:', value = '')
esource = graph_renderer.edge_renderer.data_source
code = """  info_indices.value = String(esource.selected.indices);
            start_end_values = []
            for(idx in esource.selected.indices)
            {
                index = esource.selected.indices[idx]
                start_end_values.push(esource.data['start'][index] + '=>' + esource.data['end'][index] )
            }
            info_start_end.value = String(start_end_values); """

callback = CustomJS(args = dict(esource = esource, 
                                info_indices = info_indices, 
                                info_start_end = info_start_end), 
                    code = code)
plot.select_one(TapTool).callback = callback

show(Column(plot, info_start_end))

Результат:

enter image description here

...