Я пытаюсь создать многомерный фильтр Калмана, и я думаю, что у меня правильно реализована математика.Я использую следующее в качестве целевой траектории:
И я добавил гауссовский шум среднего = [0, 0] и ковариации, R = сигма ** 2 * diag [1, 1] для генерации измерений:
Но после запуска фильтра я получаю отфильтрованную траекторию так:
Как видите, диапазон внезапно увеличился с [10000, -10000] до [20000, -20000].Я попытался отладить код, чтобы увидеть, что я что-то упустил или что-то неправильно инициализировал.Но я не смог найти ошибку.Вот мой код:
# -*- coding: utf-8 -*-
"""
Created on Thu May 30 16:10:21 2019
@author: kajaree
"""
import numpy as np
import matplotlib.pyplot as plt
from scipy.linalg import block_diag
from filterpy.common import Q_discrete_white_noise
sigma = 100
I = np.diag([1., 1.])
O = np.diag([0., 0.])
H = np.block([I, O, O])
R = sigma**2*I
class KalmanFilter(object):
def __init__(self, F=None, Q=None, R=None, P0=None, x0=None):
self.n = F.shape[1]
self.F = F
self.Q = np.diag([1., 1., 1., 1., 1., 1.])
self.R = np.eye(self.n) if R is None else R
self.P = np.eye(self.n) if P0 is None else P0
self.x = np.zeros((self.n, 1)) if x0 is None else x0.T
self.i = 0
self.x = np.reshape(self.x, (6,1))
def predict(self):
self.x = np.dot(self.F, self.x)
self.P = np.dot(self.F, np.dot(self.P, self.F.T)) + self.Q
def update(self, z):
v = np.subtract(np.reshape(z, (2,1)), np.dot(H, self.x))
S = np.dot(H, np.dot(self.P, H.T)) + R
W = np.dot(self.P, np.dot(H.T, np.linalg.inv(S)))
self.x = np.add(self.x, np.dot(W, v))
#I = np.eye(self.n)
self.P -= np.dot(W, np.dot(S, W.T))
#self.P = np.dot(I - np.dot(W, H), self.P)
'''self.P = np.dot(np.dot(I - np.dot(W, H), self.P),
(I - np.dot(W, H)).T) + np.dot(np.dot(W, self.R), W.T)'''
def plotter(measurements):
plt.rcParams['legend.fontsize'] = 10
plt.plot(measurements[:, 0], measurements[:, 1])
plt.show()
class Measurement():
def __init__(self, sigma=10):
self.R = R
self.mean = [0, 0]
def getNoise(self):
return np.random.multivariate_normal(self.mean, self.R)
class Sensor(object):
def __init__(self, position, target, dt = 0.1/60, sigma=1.0):
self.position = position
self.measurements = None
self.target = target
self.sigma = sigma
self.dt = dt
self.R = sigma**2*I
self.filteredMeasurement = None
self.covariances = None
self.x = None
self.P = None
def getMeasurements(self):
measurements = []
measure = Measurement(self.sigma)
for track in self.target.tracks:
t = np.array([track[0], track[1]])
u = measure.getNoise()
measurement = np.add(t, u)
measurement = np.subtract(measurement, self.position)
measurements.append(measurement)
self.measurements = np.array(measurements)
def filterMeasurements(self):
dt = self.dt
x0 = np.block([np.array([self.measurements[0][0], self.measurements[0][1]]).T,np.array([0, 0]).T,np.array([0, 0]).T]).T
self.target.getP()
P0 = self.target.P0
self.target.x0 = x0
sigmak = (self.target.vmax/self.target.qmax)/3.0
F = np.matrix([[1.0, 0.0, dt, 0.0, 1/2.0*dt**2, 0.0],
[0.0, 1.0, 0.0, dt, 0.0, 1/2.0*dt**2 ],
[0.0, 0.0, 1.0, 0.0, dt, 0.0],
[0.0, 0.0, 0.0, 1.0, 0.0, dt],
[0.0, 0.0, 0.0, 0.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 1.0]])
Q = sigmak**2*np.block([[dt**4*I/4, dt**3*I/2, dt**2*I/2],[dt**3*I/2, dt**2*I, dt*I],[dt**2*I/2, dt*I, I]])
'''sa = 0.1
G = np.matrix([[1/2.0*dt**2],
[1/2.0*dt**2],
[dt],
[dt],
[1.0],
[1.0]])
Q = G*G.T*sigmak**2'''
#Q = sigmak**2*np.diag([1., 1., 1., 1., 1., 1.])
#q = Q_discrete_white_noise(dim = 2, dt = dt, var= 0.001)
#Q = block_diag(q, q, q)
#print(Q)
kf = KalmanFilter(F, Q, self.R, P0, x0)
self.covariances = np.zeros((len(self.measurements), F.shape[1], F.shape[1]))
self.filteredMeasurement = np.zeros((len(self.measurements), F.shape[1], 1))
for i, measurement in enumerate(self.measurements):
kf.predict()
kf.update(measurement)
self.filteredMeasurement[i, :] = kf.x
self.P = kf.P
self.covariances[i, :, :] = self.P
def plotMeasurements(self):
plotter(self.measurements)
def plotFilteredMeasurements(self):
plotter(self.filteredMeasurement)
class Target(object):
def __init__(self, vin, qin, timePeriod):
self.x0 = np.array([0., 0., 0., 0., 0., 0.]).T
self.v0 = vin
self.q0 = qin
self.T = timePeriod
self.state = None
self.P0 = None
self.tracks = None
self.vmax = 0
self.qmax = 0
def getAngularFreq(self):
return float(self.q0)/(2*self.v0)
def getAmplitude(self):
return float(self.v0**2)/self.q0
def getMaxVelocity(self):
vx = self.tracks[:, 2]
vy = self.tracks[:, 3]
v = np.sqrt(np.add(np.square(vx), np.square(vy)))
return np.max(v)
def getMaxAccelaration(self):
ax = self.tracks[:, 4]
ay = self.tracks[:, 5]
a = np.sqrt(np.add(np.square(ax), np.square(ay)))
return np.max(a)
def getP(self):
vmax = self.getMaxVelocity()
qmax = self.getMaxVelocity()
self.P0 = np.vstack([[ sigma**2 , 0 , 0 , 0 , 0 , 0 ],
[ 0 , sigma**2 , 0 , 0 , 0 , 0 ],
[ 0 , 0 , vmax**2 , 0 , 0 , 0 ],
[ 0 , 0 , 0 , vmax**2 , 0 , 0 ],
[ 0 , 0 , 0 , 0 , qmax**2 , 0 ],
[ 0 , 0 , 0 , 0 , 0 , qmax**2]])
self.vmax = vmax
self.qmax = qmax
def trajectory_tracker(self):
A = self.getAmplitude()
w = self.getAngularFreq()
track = []
track.append(np.block([np.array([0, 0]).T,np.array([self.v0, self.v0]).T,np.array([self.q0, self.q0]).T]).T)
for t in self.T:
rx = A*np.sin(w*t)
ry = A*np.sin(2*w*t)
vx = self.v0 * np.cos(w*t)/2
vy = self.v0* np.cos(2*w*t)
ax = (-1./4)*self.q0*np.sin(w*t)
ay = (-1)*self.q0*np.sin(2*w*t)
x = np.block([np.array([rx, ry]).T,np.array([vx, vy]).T,np.array([ax, ay]).T]).T
track.append(x)
self.tracks = np.array(track)
def plot_trajectory(self):
plotter(self.tracks)
class FusionCenter(object):
def __init__(self, n, target):
self.numSensors = n
self.sensors = []
self.target = target
self.P = None
self.x = None
self.estimates = None
self.covariances = None
def initiateSensors(self):
for i in range(self.numSensors):
position = Measurement().getNoise()
sensor = Sensor(position, self.target)
sensor.getMeasurements()
self.sensors.append(sensor)
sensor.filterMeasurements()
def naiveFusion(self):
self.covariances = np.zeros((len(self.sensors[0].measurements), 6, 6))
self.estimates = np.zeros((len(self.sensors[0].measurements), 6, 1))
for i in range(len(self.sensors[0].covariances)):
tempP = np.zeros((6, 6))
tempX = np.zeros((6,1))
for j in range(len(self.sensors)):
tempP = np.add(tempP, np.linalg.inv(self.sensors[j].covariances[i, :, :]))
tempX = np.add(tempX, np.dot(np.linalg.inv(self.sensors[j].covariances[i, :, :]), self.sensors[j].filteredMeasurement[i, :, :]))
self.P = np.linalg.inv(tempP)
self.covariances[i, :, :] = np.linalg.inv(tempP)
self.estimates[i, :, :] = np.dot(self.covariances[i, :, :], tempX)
def trackletFusion(self):
self.P = np.zeros((6,6))
self.x = np.zeros((6, 1))
self.covariances = np.zeros((len(self.sensors[0].measurements), 6, 6))
self.estimates = np.zeros((len(self.sensors[0].measurements), 6, 1))
for i in range(1, len(self.sensors[0].covariances)-1):
tempP = np.zeros((6, 6))
tempX = np.zeros((6, 1))
for j in range(len(self.sensors)):
Iks = np.subtract(np.linalg.inv(self.sensors[j].covariances[i, :, :]), np.linalg.inv(self.sensors[j].covariances[i-1, :, :]))
iks = np.subtract(np.dot(np.linalg.inv(self.sensors[j].covariances[i, :, :]), self.sensors[j].filteredMeasurement[i, :]),
np.dot(np.linalg.inv(self.sensors[j].covariances[i-1, :, :]), self.sensors[j].filteredMeasurement[i-1, :]))
#Iks = np.dot(np.dot(H.T, np.linalg.inv(R)), H)
#iks = np.dot(np.dot(H.T, np.linalg.inv(R)), self.sensors[j].measurements[i, :, :])
tempP = np.add(tempP, Iks)
tempX = np.add(tempX, iks)
pinvP = np.linalg.pinv(self.P)
tempX += np.dot(pinvP, self.x)
tempP = np.add(pinvP, tempP)
self.P = np.linalg.pinv(tempP)
self.x = np.dot(self.P, tempX)
self.covariances[i, :, :] = self.P
self.estimates[i, :, :] = self.x
span = np.arange(0.,1000., 0.5)
target = Target(300, 9, span)
target.trajectory_tracker()
target.plot_trajectory()
fs = FusionCenter(4, target)
fs.initiateSensors()
for i in range(4):
fs.sensors[i].plotMeasurements()
fs.sensors[i].plotFilteredMeasurements()
fs.naiveFusion()
plotter(fs.estimates)
fs.trackletFusion()
plotter(fs.estimates)
Я использовал кусочную модель белого ускорения и следующую для инициализации:
Заранее спасибо.