Я пытаюсь выполнить классификацию изображений, используя модель Xception Keras, смоделированную по этому коду .Однако я хочу использовать несколько графических процессоров для параллельной классификации изображений с помощью этой функции .Я верю, что это возможно, и у меня есть оригинальный код, работающий без поддержки нескольких GPU, однако я не могу заставить функцию multi_gpu_model работать так, как я ожидал.Я следую этому примеру для примера с несколькими графическими процессорами.Это мой код (это бэкэнд приложения Flask), он создает модель, делает прогноз на примере ndarray при создании класса, а затем ожидает закодированное в base 64 изображение в функции классификации:
import os
from keras.preprocessing import image as preprocess_image
from keras.applications import Xception
from keras.applications.inception_v3 import preprocess_input, decode_predictions
from keras.utils import multi_gpu_model
import numpy as np
import tensorflow as tf
import PIL.Image
from numpy import array
class ModelManager:
def __init__(self, model_path):
self.model_name = 'ImageNet'
self.model_version = '1.0'
self.batch_size = 32
height = 224
width = 224
num_classes = 1000
# self.model = tf.keras.models.load_model(os.path.join(model_path, 'ImageNetXception.h5'))
with tf.device('/cpu:0'):
model = Xception(weights=None,
input_shape=(height, width, 3),
classes=num_classes, include_top=True)
# Replicates the model on 8 GPUs.
# This assumes that your machine has 8 available GPUs.
self.parallel_model = multi_gpu_model(model, gpus=8)
self.parallel_model.compile(loss='categorical_crossentropy',
optimizer='rmsprop')
print("Loaded Xception model.")
x = np.empty((1, 224, 224, 3))
self.parallel_model.predict(x, batch_size=self.batch_size)
self.graph = tf.get_default_graph()
self.graph.finalize()
def classify(self, ids, images):
results = []
all_images = np.empty((0, 224, 224, 3))
# all_images = []
for image_id, image in zip(ids, images):
# This does the same as keras.preprocessing.image.load_img
image = image.convert('RGB')
image = image.resize((224, 224), PIL.Image.NEAREST)
x = preprocess_image.img_to_array(image)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
all_images = np.append(all_images, x, axis=0)
# all_images.append(x)
# a = array(all_images)
# print(type(a))
# print(a[0])
with self.graph.as_default():
preds = self.parallel_model.predict(all_images, batch_size=288)
#print(type(preds))
top3 = decode_predictions(preds, top=3)[0]
print(top3)
output = [((t[1],) + t[2:]) for t in top3]
predictions = [
{'label': label, 'probability': probability * 100.0}
for label, probability in output
]
results.append({
'id': 1,
'predictions': predictions
})
print(len(results))
return results
Части, в которых я не уверен, - это то, что передать функцию предсказания.В настоящее время я создаю ndarray изображений, которые я хочу классифицировать после их предварительной обработки, а затем передаю их в функцию предикторов.Функция возвращает, но переменная preds не содержит то, что я ожидаю.Я пытался перебрать объект preds, но с ошибками decode_predictions, когда я пропускаю один элемент, но отвечаю одним предсказанием, когда я передаю весь pred ndarray.В примере кода они не используют функцию decode_predictions, поэтому я не уверен, как использовать ее с ответом из parallel_model.predict.Спасибо за любую помощь или ресурсы, спасибо.