Я пытаюсь работать с Google Vision и Python.Я использую файлы примеров, но получаю одно и то же сообщение об ошибке:
Traceback (most recent call last):
File "C:\Program Files (x86)\Python37-32\lib\site-packages\google\protobuf\jso
n_format.py", line 416, in Parse
js = json.loads(text, object_pairs_hook=_DuplicateChecker)
File "C:\Program Files (x86)\Python37-32\lib\json\__init__.py", line 361, in l
oads
return cls(**kw).decode(s)
File "C:\Program Files (x86)\Python37-32\lib\json\decoder.py", line 338, in de
code
obj, end = self.raw_decode(s, idx=_w(s, 0).end())
File "C:\Program Files (x86)\Python37-32\lib\json\decoder.py", line 356, in ra
w_decode
raise JSONDecodeError("Expecting value", s, err.value) from None
json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0)
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "sample.py", line 72, in <module>
async_detect_document('gs://matr/file_1035.pdf','gs://matr/output/')
File "sample.py", line 59, in async_detect_document
json_string, vision.types.AnnotateFileResponse())
File "C:\Program Files (x86)\Python37-32\lib\site-packages\google\protobuf\jso
n_format.py", line 418, in Parse
raise ParseError('Failed to load JSON: {0}.'.format(str(e)))
google.protobuf.json_format.ParseError: Failed to load JSON: Expecting value: li
ne 1 column 1 (char 0).
Я предполагаю, что это как-то связано с результирующим файлом JSON.Это действительно производит файл JSON, но я предполагаю, что это должно напечатать это к командной строке.Вот первые несколько строк файла JSON:
{
"inputConfig": {
"gcsSource": {
"uri": "gs://python-docs-samples-tests/HodgeConj.pdf"
},
"mimeType": "application/pdf"
},
Полученный файл загружается в объект JSON с помощью
data = json.load(jsonfile)
Я пробовал print (json_string)
, но получаю толькоb'placeholder'
Как я могу заставить это работать?Я использую Python 3.7.2
Мой код указан ниже:
def async_detect_document(gcs_source_uri, gcs_destination_uri):
"""OCR with PDF/TIFF as source files on GCS"""
from google.cloud import vision
from google.cloud import storage
from google.protobuf import json_format
import re
# Supported mime_types are: 'application/pdf' and 'image/tiff'
mime_type = 'application/pdf'
# How many pages should be grouped into each json output file.
batch_size = 2
client = vision.ImageAnnotatorClient()
feature = vision.types.Feature(
type=vision.enums.Feature.Type.DOCUMENT_TEXT_DETECTION)
gcs_source = vision.types.GcsSource(uri=gcs_source_uri)
input_config = vision.types.InputConfig(
gcs_source=gcs_source, mime_type=mime_type)
gcs_destination = vision.types.GcsDestination(uri=gcs_destination_uri)
output_config = vision.types.OutputConfig(
gcs_destination=gcs_destination, batch_size=batch_size)
async_request = vision.types.AsyncAnnotateFileRequest(
features=[feature], input_config=input_config,
output_config=output_config)
operation = client.async_batch_annotate_files(
requests=[async_request])
print('Waiting for the operation to finish.')
operation.result(timeout=180)
# Once the request has completed and the output has been
# written to GCS, we can list all the output files.
storage_client = storage.Client()
match = re.match(r'gs://([^/]+)/(.+)', gcs_destination_uri)
bucket_name = match.group(1)
prefix = match.group(2)
bucket = storage_client.get_bucket(bucket_name=bucket_name)
# List objects with the given prefix.
blob_list = list(bucket.list_blobs(prefix=prefix))
print('Output files:')
for blob in blob_list:
print(blob.name)
# Process the first output file from GCS.
# Since we specified batch_size=2, the first response contains
# the first two pages of the input file.
output = blob_list[0]
json_string = output.download_as_string()
response = json_format.Parse(
json_string, vision.types.AnnotateFileResponse())
# The actual response for the first page of the input file.
first_page_response = response.responses[0]
annotation = first_page_response.full_text_annotation
# Here we print the full text from the first page.
# The response contains more information:
# annotation/pages/blocks/paragraphs/words/symbols
# including confidence scores and bounding boxes
print(u'Full text:\n{}'.format(
annotation.text))
async_detect_document('gs://my_bucket/file_1035.pdf','gs://my_bucket/output/')