Почему два моих классификатора не могут предсказать много меток? - PullRequest
0 голосов
/ 22 июня 2019

Я пытаюсь сравнить классификаторы RandomForest (RF), SupportVectorMachine (SVM) и Multilayer Perceptron (MLP), глядя на их classification_report. Это мультиклассификация по категориальным данным. Те же данные (378443 записей, 7 столбцов) то же самое, тот же y_test ,. Я проверил мой y_train и y_test с:

 from collections import Counter
    Counter(y_train)
    Counter(y_test)

Я вижу, что у обоих одинаковые 31 класс.

OUTPUT Counter(y_train):             OUTPUT Counter(y_test)
Counter({'Class 1': 201096,        Counter({'Class 1': 133917,
         'Class 2': 24109,                  'Class 11': 5,
         'Class 3': 731,                    'Class 2': 16167,
         'Class 4': 851,                    'Class 3': 475,
         'Class 5': 60,                     'Class 4': 628,
         'Class 6': 7,                      'Class 8': 7,
         'Class 7': 19,                     'Class 12': 19,
         'Class 8': 3,                      'Class 21': 3,
         'Class 9': 12,                     'Class 25': 10,
         'Class 10': 7,                     'Class 18': 6,
         'Class 11': 5,                     'Class 9': 12,
         'Class 12': 28,                    'Class 5': 41,
         'Class 13': 5,                     'Class 16': 4,
         'Class 14': 8,                     'Class 7': 14,
         'Class 15': 9,                     'Class 17': 3,
         'Class 16': 6,                     'Class 30': 3,
         'Class 17': 7,                     'Class 26': 4,
         'Class 18': 4,                     'Class 27': 4,
         'Class 19': 6,                     'Class 14': 2,
         'Class 20': 5,                     'Class 28': 5,
         'Class 21': 7,                     'Class 13': 5,
         'Class 22': 6,                     'Class 24': 9,
         'Class 23': 7,                     'Class 15': 7,
         'Class 24': 15,                    'Class 31': 5,
         'Class 25': 10,                    'Class 10': 3,
         'Class 26': 10,                    'Class 23': 3,
         'Class 27': 6,                     'Class 29': 1,
         'Class 28': 5,                     'Class 22': 4,
         'Class 29': 9,                     'Class 20': 5,
         'Class 30': 7,                     'Class 6': 3,
         'Class 31': 5})                    'Class 19': 4})

Но я получаю это предупреждение, когда печатаюlass_report (y_train, y_pred):

UndefinedMetricWarning: точность и F-оценка плохо определены и устанавливается на 0,0 в метках без прогнозируемых выборок. «Точность», «прогнозируемый», средний, warn_for)

, что означает, что не все метки включены в y_pred, то есть в y_test есть некоторые метки, которые классификатор никогда не предсказывает.

С помощью RF все работает хорошо (только один класс получает 0,00 вification_report для точности и отзыва).

Классификационный отчет SVM и MLP содержит 0,00 с в половине классов.

MLP может предсказать 13 классов (более 0,00 в точности / отзыве): class 1,2,3,4, 6, 8,9, 12, 14, 20,21, 23, 25.

Весь мой код:

 #data is imported

Y = data['class']
data=data.drop['class']
labEn = {}
#LabelEncoding for cols
for x in range(len(data.columns)):
    #creating the LabelEncoder for col x 
    labEn[x] = LabelEncoder()
    dfPre[data.columns[x]] = labEn[x].fit_transform(data[data.columns[x]])
    #for unknown labels
    labEn[x].classes_ = np.append(labEn[x].classes_, '-unknown-')

X = data
X.shape #Output:(378443, 7)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0)
    ###### amount of train and test data####################
X_train.shape, y_train.shape
    #Output: (227065, 7)
(227065,)
X_test.shape, y_test.shape
    #Output: (151378, 7)
(151378,)

from collections import Counter
print(Counter(y_train))
print(Counter(y_test))

##RF
rfclf = RandomForestClassifier(class_weight = 'balanced')
rfclf.fit(X_train,  y_train)

y_train_pred = cross_val_predict(rfclf, X_train, y_train, cv=3)
y_test_pred=cross_val_predict(rfclf, X_test, y_test, cv=3)

print(classification_report(y_train, y_train_pred))

print(classification_report(y_test, y_test_pred))

##for SVM and MLP: Scaling data
start_time_standardscaler = time.time()
scaler = StandardScaler()
scaler.fit(X_train) 

X_train_scaled=scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test) 

#for svm: One Hot Encoder - I also tried it without!
enc = OneHotEncoder(handle_unknown='ignore')
enc.fit(X_train_scaled)
X_train_X_test_ohencoded=enc.transform(X_train_scaled)
X_test_ohencoded=enc.transform(X_test_scaled)

##SVM
svmclf=svm.SVC(kernel='rbf', gamma='scale')
svmclf.fit(X_train_scaled,y_train)#also tried X_train_ohencoded,y_train)

y_train_pred_scaled = cross_val_predict(svmclf, X_train_scaled, y_train, cv=10)
#y_train_pred_ohencoded = cross_val_predict(svmclf, X_train_ohencoded, y_train, cv=10)


print(classification_report(y_train, y_train_pred_scaled))
#print(classification_report(y_train, y_train_pred_ohencoded))

print(classification_report(y_test, y_test_pred))
#print(classification_report(y_test, y_test_pred_ohencoded))

##MLP
mlpclf = MLPClassifier(solver='adam', alpha=1e-5, hidden_layer_sizes=(50, 100), random_state=1)
mlpclf.fit(X_train_scaled,y_train)

y_train_pred = cross_val_predict(mlpclf, X_train_scaled, y_train, cv=10)
y_test_pred=cross_val_predict(rfclf, X_test_scaled, y_test, cv=3)

print(classification_report(y_train, y_train_pred))
print(classification_report(y_test, y_test_pred))



##Prediction
#works well since the 5 classes all classifiers could train has to be predicted here (how lucky)

#newdata is imported
#Scaler from above is used 
newdata_scaled=scaler.transform(newdata)
#Encoder from above is used
newdata_enc=enc.transform(newdata_scaled)

rfclf.predict(newdata)
svmclf.predict(newdata_enc)
mlpclf.predict(newdata_scaled)

1 Ответ

0 голосов
/ 22 июня 2019

У вас есть набор данных о серьезном дисбалансе с 99% набора данных, классифицированных только в 2 из 31 классов.Помимо размера набора данных, также важны различия в распределении (в процентах от каждого класса).Ваша модель будет стремиться соответствовать классу с более высоким процентом, потому что она получит высокую точность там.

Один из способов исправить это - создать синтетические образцы для класса меньшинства. SMOTE (Техника избыточной выборки синтетического меньшинства) может быть применена к вашим данным через пакет imblearn для python.

Вы можете перейти здесь и здесь для более подробной информации

...