Так что мне нужно выполнить обработку звука как часть моего семестра, но я хочу создать базовое распознавание речи и пойти немного дальше. Просмотр других руководств и информации, в частности, о GMM в Tensorflow, обычно не позволяет вам самостоятельно выполнять обработку звука.
Я хочу подключить свой код для декодирования wav-файлов, построения спектограммы и преобразования в MFCC для обучения модели, которая затем может классифицировать конкретные простые выборки слов. Но я просто не могу найти никакой информации или помощников по этому вопросу.
Пока я пробовал много разных вещей, но Простое учебное пособие по распознаванию звука на веб-сайте Tensorflow кажется очень близким к тому, чего я хочу в конечном итоге достичь, даже используя MFCC в качестве метода обработки звука по умолчанию. Я попытался пройти и перепроектировать это, ломая различные вызовы функций. Но все чрезвычайно запутанно.
Я бы хотел сделать то же, что и в этом уроке, с моей собственной обработкой аудио. Это не обязательно имеет значение в части сложности машинного обучения. Любые ранее существующие методы или очень простые штук plug'n'play будут в порядке.
Вот мой код для MFCC и спектрограмма, если необходимо:
def do_mfcc(spectrogram, upper_frequency_limit=4000, lower_frequency_limit=0, dct_coefficient_count=12):
mfcc = dct(spectrogram, type=2, axis=1, norm='ortho')[:, 1: (dct_coefficient_count + 1)] # Keep 2-13
mfcc -= (numpy.mean(mfcc, axis=0) + 1e-8) # Mean normalization of mfcc
return mfcc
def gimmeDaSPECtogram(input, sample_rate, window_size_ms=30.0, stride_ms=10.0, pre_emphasis=0.97, NFFT=512, triangular_filters=40, magnitude_squared=False, name=None):
sample_rate, signal = scipy.io.wavfile.read(input) # File assumed to be in the same directory
signal = signal[0:int(1.0 * sample_rate)] # Keep only the first second
window_size_ms = window_size_ms/1000
stride_ms = stride_ms/1000
emphasized_signal = numpy.append(signal[0], signal[1:] - pre_emphasis * signal[:-1])
frame_length, frame_step = window_size_ms * sample_rate, stride_ms * sample_rate # Convert from seconds to samples
signal_length = len(emphasized_signal)
frame_length = int(round(frame_length))
frame_step = int(round(frame_step))
num_frames = int(numpy.ceil(
float(numpy.abs(signal_length - frame_length)) / frame_step)) # Make sure that we have at least 1 frame
pad_signal_length = num_frames * frame_step + frame_length
z = numpy.zeros((pad_signal_length - signal_length))
pad_signal = numpy.append(emphasized_signal,
z) # Pad Signal to make sure that all frames have equal number of samples without truncating any samples from the original signal
indices = numpy.tile(numpy.arange(0, frame_length), (num_frames, 1)) + numpy.tile(
numpy.arange(0, num_frames * frame_step, frame_step), (frame_length, 1)).T
frames = pad_signal[indices.astype(numpy.int32, copy=False)]
frames *= numpy.hamming(frame_length)
mag_frames = numpy.absolute(numpy.fft.rfft(frames, NFFT)) # Magnitude of the FFT
pow_frames = ((1.0 / NFFT) * ((mag_frames) ** 2)) # Power Spectrum
low_freq_mel = 0
high_freq_mel = (2595 * numpy.log10(1 + (sample_rate / 2) / 700))
mel_points = numpy.linspace(low_freq_mel, high_freq_mel, triangular_filters + 2) # Equally spaced in Mel scale
hz_points = (700 * (10 ** (mel_points / 2595) - 1)) # Convert Mel to Hz
bin = numpy.floor((NFFT + 1) * hz_points / sample_rate)
fbank = numpy.zeros((triangular_filters, int(numpy.floor(NFFT / 2 + 1))))
for m in range(1, triangular_filters + 1):
f_m_minus = int(bin[m - 1]) # left
f_m = int(bin[m]) # center
f_m_plus = int(bin[m + 1]) # right
for k in range(f_m_minus, f_m):
fbank[m - 1, k] = (k - bin[m - 1]) / (bin[m] - bin[m - 1])
for k in range(f_m, f_m_plus):
fbank[m - 1, k] = (bin[m + 1] - k) / (bin[m + 1] - bin[m])
filter_banks = numpy.dot(pow_frames, fbank.T)
filter_banks = numpy.where(filter_banks == 0, numpy.finfo(float).eps, filter_banks) # Numerical Stability
filter_banks = 20 * numpy.log10(filter_banks) # dB
filter_banks = do_mfcc(filter_banks, upper_frequency_limit=4000, lower_frequency_limit=0, dct_coefficient_count=12)
# Code below is for visualising MFCC
plt.subplot(312)
plt.imshow(filter_banks.T, cmap=plt.cm.jet, aspect='auto')
plt.xticks(numpy.arange(0, (filter_banks.T).shape[1],
int((filter_banks.T).shape[1] / 4)),
['0s', '0.25s', '0.5s', '0.75s', '1s'])
plt.yticks(numpy.arange(1, (filter_banks.T).shape[0],
int((filter_banks.T).shape[0] / 4)),
['0', '3', '6', '9', '12'])
ax = plt.gca()
ax.invert_yaxis()
plt.show()
return filter_banks
gimmeDaSPECtogram("samples/leftTest.wav", 16000, window_size_ms=30.0, stride_ms=10.0, pre_emphasis=0.97)
Я ожидаю использовать MFCC в качестве входных данных для обучения модели каждого wav-файла в наборе данных, чтобы я мог использовать классификатор для распознавания основных слов.
Приветствуется любая помощь / совет по внедрению пользовательской обработки звука в тензорном потоке. Также приветствуются любые ссылки на руководства или указатели в правильном направлении!