У меня есть программа для симуляции, и внутри программы у меня есть функция.Я понял, что функция потребляет большую часть времени моделирования.Итак, я пытаюсь оптимизировать функцию в первую очередь.Функция выглядит следующим образом:
Julia version 1.1:
function fun_jul(M,ksi,xi,x)
F(n,x) = sin(n*pi*(x+1)/2)*cos(n*pi*(x+1)/2);
K = length(ksi);
Z = zeros(length(x),K);
for n in 1:M
for k in 1:K
for l in 1:length(x)
Z[l,k] += (1-(n/(M+1))^2)^xi*F(n,ksi[k])*F(n,x[l]);
end
end
end
return Z
end
Я также переписываю вышеуказанную функцию в python + numba для сравнения следующим образом
Python + numba
import numpy as np
from numba import prange, jit
@jit(nopython=True, parallel=True)
def fun_py(M,ksi,xi,x):
K = len(ksi);
F = lambda nn,xx: np.sin(nn*np.pi*(xx+1)/2)*np.cos(nn*np.pi*(xx+1)/2);
Z = np.zeros((len(x),K));
for n in range(1,M+1):
for k in prange(0,K):
Z[:,k] += (1-(n/(M+1))**2)**xi*F(n,ksi[k])*F(n,x);
return Z
Но коды Джулии очень медленные, вот мои результаты:
Результаты Джулии:
using BenchmarkTools
N=400; a=-0.5; b=0.5; x=range(a,b,length=N); cc=x; M = 2*N+100; xi = M/40;
@benchmark fun_jul(M,cc,xi,x)
BenchmarkTools.Trial:
memory estimate: 1.22 MiB
allocs estimate: 2
--------------
minimum time: 25.039 s (0.00% GC)
median time: 25.039 s (0.00% GC)
mean time: 25.039 s (0.00% GC)
maximum time: 25.039 s (0.00% GC)
--------------
samples: 1
evals/sample: 1
Результаты Python:
N=400;a = -0.5;b = 0.5;x = np.linspace(a,b,N);cc = x;M = 2*N + 100;xi = M/40;
%timeit fun_py(M,cc,xi,x);
1.2 s ± 10.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Любая помощь поприветствуется улучшение кодов как для julia, так и для python + numba.
Обновлено
На основе ответа @Przemyslaw Szufel и других постов я улучшил коды numba и julia,Теперь оба распараллелены.Вот времена
Время Python + Numba:
@jit(nopython=True, parallel=True)
def fun_py(M,ksi,xi,x):
K = len(ksi);
F = lambda nn,xx: np.sin(nn*np.pi*(xx+1)/2)*np.cos(nn*np.pi*(xx+1)/2);
Z = np.zeros((K,len(x)));
for n in range(1,M+1):
pw = (1-(n/(M+1))**2)**xi; f=F(n,x)
for k in prange(0,K):
Z[k,:] = Z[k,:] + pw*F(n,ksi[k])*f;
return Z
N=1000; a=-0.5; b=0.5; x=np.linspace(a,b,N); cc=x; M = 2*N+100; xi = M/40;
%timeit fun_py(M,cc,xi,x);
733 ms ± 13.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Время Джулии
N=1000; a=-0.5; b=0.5; x=range(a,b,length=N); cc=x; M = 2*N+100; xi = M/40;
@benchmark fun_jul2(M,cc,xi,x)
BenchmarkTools.Trial:
memory estimate: 40.31 MiB
allocs estimate: 6302
--------------
minimum time: 705.470 ms (0.17% GC)
median time: 726.403 ms (0.17% GC)
mean time: 729.032 ms (1.68% GC)
maximum time: 765.426 ms (5.27% GC)
--------------
samples: 7
evals/sample: 1