Мне не удалось получить хорошее соответствие вашим данным, используя уравнение в вашем посте. Мой поиск по уравнению обнаружил, что стандартное уравнение пика Вейбулла, «a * exp (-0,5 * pow (log (x / b) / c, 2.0))», дает RMSE = 1,619 и R-квадрат = 0,997 для параметров a = 103.1533969 , b = 498,93546398 и с = 2,67321918, как показано ниже. Я включил графического установщика Python, использующего это уравнение, и стандартный модуль генетического алгоритма scipy diff_evolution, чтобы найти начальные оценки параметров для curve_fit (), этот модуль scipy использует алгоритм Latin Hypercube для обеспечения тщательного поиска пространства параметров, и этот алгоритм требует границ в пределах который искать. В этом примере границы поиска выводятся из данных. Гораздо проще определить диапазоны для начальных оценок параметров, чем найти конкретные значения.
![plot](https://i.stack.imgur.com/QhvAr.png)
import numpy, scipy, matplotlib
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from scipy.optimize import differential_evolution
import warnings
xData = [280, 150, 75, 45, 38, 20, 10, 5.1, 2.6]
yData = [99.57592773, 95.53773499, 81.14313507, 67.08183289, 62.93716431, 49.961483, 37.80876923, 24.53152657, 13.2219696]
def func(x, a, b, c): # Peak_WeibullPeak_model from zunzun.com
return a * numpy.exp(-0.5 * numpy.power(numpy.log(x/b) / c, 2.0))
# function for genetic algorithm to minimize (sum of squared error)
def sumOfSquaredError(parameterTuple):
warnings.filterwarnings("ignore") # do not print warnings by genetic algorithm
val = func(xData, *parameterTuple)
return numpy.sum((yData - val) ** 2.0)
def generate_Initial_Parameters():
# min and max used for bounds
maxX = max(xData)
minX = min(xData)
maxY = max(yData)
minY = min(yData)
minData = min(minX, minY)
maxData = max(maxY, maxX)
parameterBounds = []
parameterBounds.append([minData, maxData]) # search bounds for a
parameterBounds.append([minData, maxData]) # search bounds for b
parameterBounds.append([minData, maxData]) # search bounds for c
# "seed" the numpy random number generator for repeatable results
result = differential_evolution(sumOfSquaredError, parameterBounds, seed=3)
return result.x
# by default, differential_evolution completes by calling curve_fit() using parameter bounds
geneticParameters = generate_Initial_Parameters()
# now call curve_fit without passing bounds from the genetic algorithm,
# just in case the best fit parameters are aoutside those bounds
fittedParameters, pcov = curve_fit(func, xData, yData, geneticParameters)
print('Fitted parameters:', fittedParameters)
print()
modelPredictions = func(xData, *fittedParameters)
absError = modelPredictions - yData
SE = numpy.square(absError) # squared errors
MSE = numpy.mean(SE) # mean squared errors
RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (numpy.var(absError) / numpy.var(yData))
print()
print('RMSE:', RMSE)
print('R-squared:', Rsquared)
print()
##########################################################
# graphics output section
def ModelAndScatterPlot(graphWidth, graphHeight):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
axes = f.add_subplot(111)
# first the raw data as a scatter plot
axes.plot(xData, yData, 'D')
# create data for the fitted equation plot
xModel = numpy.linspace(min(xData), max(xData))
yModel = func(xModel, *fittedParameters)
# now the model as a line plot
axes.plot(xModel, yModel)
axes.set_xlabel('X Data') # X axis data label
axes.set_ylabel('Y Data') # Y axis data label
plt.show()
plt.close('all') # clean up after using pyplot
graphWidth = 800
graphHeight = 600
ModelAndScatterPlot(graphWidth, graphHeight)