Позвольте мне предположить, что ваша структура папок выглядит следующим образом:
├── testfiles
| ├── BougainvilleaGlabra
| | ├── BougainvilleaGlabra_001.jpeg
| | ├── *.jpeg
| ├── HandroanthusChrysotrichus
| | ├── HandroanthusChrysotrichus_001.jpeg
| | ├── *.jpeg
| ├── SpathodeaVenusta
| | ├── SpathodeaVenusta_001.jpeg
| | ├── *.jpeg
| ├──TibouchinaMutabilis
| | ├── TibouchinaMutabilis_001.jpeg
| | ├── *.jpeg
├── test.py
Сначала вам нужно получить все пути к изображениям.
import glob,os
path = 'testfiles/'
files = [f for f in glob.glob(path + "*/*.jpeg", recursive=True)]
print(files)
['testfiles/HandroanthusChrysotrichus/HandroanthusChrysotrichus_002.jpeg', 'testfiles/HandroanthusChrysotrichus/HandroanthusChrysotrichus_001.jpeg', ...]
Затем вам нужно закодировать каждый класс в число.
label_map = {'BougainvilleaGlabra':0,
'HandroanthusChrysotrichus':1,
'SpathodeaVenusta':2,
'TibouchinaMutabilis':3,}
label = [label_map[os.path.basename(file).split('_')[0]] for file in files]
print(label)
[1, 1, 1, 0, 0, 0, 2, 2, 2, 3, 3, 3]
И тогда вы можете использовать tf.data.Dataset
.Вам нужна функция для чтения изображения и изменения его размера в одну и ту же форму.
import tensorflow as tf
def read_image(filename,label):
image_string = tf.read_file(filename)
image_decoded = tf.image.decode_jpeg(image_string)
image_resized = tf.image.resize_images(image_decoded, [28, 28])
return image_resized,label
dataset = tf.data.Dataset.from_tensor_slices((files,label))
# you can use batch() to set batch_size
dataset = dataset.map(read_image).shuffle(1000).batch(2)
print(dataset.output_shapes)
print(dataset.output_types)
(TensorShape([Dimension(None), Dimension(28), Dimension(28), Dimension(None)]), TensorShape([Dimension(None)]))
(tf.float32, tf.int32)
Наконец, вы определяете итератор для получения пакетных данных.
iterator = dataset.make_initializable_iterator()
next_element = iterator.get_next()
with tf.Session() as sess:
for _ in range(2):
sess.run(iterator.initializer)
batch_image,batch_label = sess.run(next_element)
print(batch_image.shape)
print(batch_label.shape)
(2, 28, 28, 4)
(2,)
(2, 28, 28, 4)
(2,)