У меня есть код keras, реализующий такой автоматический кодер:
ENCODING_DIM = 5
# input placeholder
input_img = tf.keras.layers.Input(shape=(320,))
# this is the encoded representation of the input
encoded = tf.keras.layers.Dense(35, activation='relu')(input_img)
encoded = tf.keras.layers.Dense(20, activation='relu')(encoded)
encoded = tf.keras.layers.Dense(ENCODING_DIM, activation='relu')(encoded)
decoded = tf.keras.layers.Dense(20, activation='relu')(encoded)
decoded = tf.keras.layers.Dense(35, activation='relu')(decoded)
decoded = tf.keras.layers.Dense(320, activation='sigmoid')(decoded)
autoencoder = tf.keras.models.Model(input_img, decoded)
encoder = tf.keras.models.Model(input_img, encoded)
encoded_input = tf.keras.layers.Input(shape=(ENCODING_DIM,))
decoder_layer = autoencoder.layers[-1]
#decoded_input = tf.keras.models.Model(encoded_input,decoder_layer(encoded_input))
autoencoder.compile(optimizer='nadam', loss='binary_crossentropy')
from keras.callbacks import ModelCheckpoint
, он отлично работает.
Теперь я хотел бы иметь переменные входные размеры (например, первый вектор [320x1], второй [280x1] и т. д.)
Теперь я пытаюсь сделать это:
ENCODING_DIM = 5
# input placeholder
input_img = tf.keras.layers.Input(shape=(None,))
# this is the encoded representation of the input
encoded = tf.keras.layers.Dense(35, activation='relu')(input_img)
encoded = tf.keras.layers.Dense(20, activation='relu')(encoded)
encoded = tf.keras.layers.Dense(ENCODING_DIM, activation='relu')(encoded)
decoded = tf.keras.layers.Dense(20, activation='relu')(encoded)
decoded = tf.keras.layers.Dense(35, activation='relu')(decoded)
decoded = tf.keras.layers.Dense(320, activation='sigmoid')(decoded)
autoencoder = tf.keras.models.Model(input_img, decoded)
encoder = tf.keras.models.Model(input_img, encoded)
encoded_input = tf.keras.layers.Input(shape=(ENCODING_DIM,))
decoder_layer = autoencoder.layers[-1]
#decoded_input = tf.keras.models.Model(encoded_input,decoder_layer(encoded_input))
autoencoder.compile(optimizer='nadam', loss='binary_crossentropy')
from keras.callbacks import ModelCheckpoint
, но возвращает ошибку вроде:
ValueError Traceback (most recent call last)
<ipython-input-24-7764c4707491> in <module>()
14
15 # this is the encoded representation of the input
---> 16 encoded = tf.keras.layers.Dense(35, activation='relu')(input_img)
17 encoded = tf.keras.layers.Dense(20, activation='relu')(encoded)
18 encoded = tf.keras.layers.Dense(ENCODING_DIM, activation='relu')(encoded)
2 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/layers/core.py in build(self, input_shape)
935 input_shape = tensor_shape.TensorShape(input_shape)
936 if tensor_shape.dimension_value(input_shape[-1]) is None:
--> 937 raise ValueError('The last dimension of the inputs to `Dense` '
938 'should be defined. Found `None`.')
939 last_dim = tensor_shape.dimension_value(input_shape[-1])
ValueError: The last dimension of the inputs to `Dense` should be defined. Found `None`.
Как я могу реализовать автоэнкодер с разными входными размерами?