Я создаю простую рекомендацию, которая будет рекомендовать других пользователей на основе сходства твитов. Я использовал tfidf для векторизации всего текста, и я смог уместить данные в MultinomialNB
, но я продолжаю получать ошибки при попытке предсказать
Я пытался преобразовать данные в массив, но получаю сообщение об ошибке: невозможно преобразовать строку в число с плавающей точкой. Могу ли я использовать этот алгоритм для этих данных? Я пробовал разные столбцы, чтобы увидеть, получаю ли я результат, но та же самая позиционная ошибка
ValueError Traceback (most recent call last)
<ipython-input-39-a982bc4e1f49> in <module>
20 nb_mul.fit(train_idf,y_train)
21 user_knn = UserUser(10, min_sim = 0.4, aggregate='weighted-average')
---> 22 nb_mul.predict(y_test)
23 #nb_mul.predict(np.array(test['Tweets'], test['Sentiment']))
24 #TODO: find a way to predict with test data
~/anaconda2/lib/python3.6/site-packages/sklearn/naive_bayes.py in predict(self, X)
64 Predicted target values for X
65 """
---> 66 jll = self._joint_log_likelihood(X)
67 return self.classes_[np.argmax(jll, axis=1)]
68
~/anaconda2/lib/python3.6/site-packages/sklearn/naive_bayes.py in _joint_log_likelihood(self, X)
728 check_is_fitted(self, "classes_")
729
--> 730 X = check_array(X, accept_sparse='csr')
731 return (safe_sparse_dot(X, self.feature_log_prob_.T) +
732 self.class_log_prior_)
~/anaconda2/lib/python3.6/site-packages/sklearn/utils/validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
525 try:
526 warnings.simplefilter('error', ComplexWarning)
--> 527 array = np.asarray(array, dtype=dtype, order=order)
528 except ComplexWarning:
529 raise ValueError("Complex data not supported\n"
~/anaconda2/lib/python3.6/site-packages/numpy/core/numeric.py in asarray(a, dtype, order)
536
537 """
--> 538 return array(a, dtype, copy=False, order=order)
539
540
ValueError: could not convert string to float: '["b\'RT @Avalanche: Only two cities have two teams in the second round of the playoffs...\\\\n\\\\nDenver and Boston!\\\\n\\\\n#MileHighBasketball #GoAvsGo http\\\\xe2\\\\x80\\\\xa6\'"]'
for train, test in xf.partition_users(final_test[['user','Tweets','Sentiment']],5, xf.SampleFrac(0.2)):
x_train = []
for index, row in train.iterrows():
x_train.append(row['Tweets'])
y_train = np.array(train['Sentiment'])
y_test = np.array([test['user'],test['Tweets']])
#print(y_train)
tfidf = TfidfVectorizer(min_df=5, max_df = 0.8, sublinear_tf=True, use_idf=True,stop_words='english', lowercase=False)
train_idf = tfidf.fit(x_train)
train_idf = train_idf.transform(x_train)
nb_mul = MultinomialNB()
nb_mul.fit(train_idf,y_train)
user_knn = UserUser(10, min_sim = 0.4, aggregate='weighted-average')
nb_mul.predict(y_test)
Данные выглядят так
user Tweets \
0 2287418996 ["b'RT @HPbasketball: This stuff is 100% how K...
1 2287418996 ["b'@KeuchelDBeard I may need to rewatch Begin...
2 2287418996 ["b'@keithlaw Is that the stated reason for th...
3 2287418996 ['b"@keithlaw @Yanks23242 I definitely don\'t ...
4 2287418996 ["b'@Yanks23242 @keithlaw Sorry, please sub Jo...
Sentiment Score
0 neu 0.815
1 neu 0.744
2 neu 1.000
3 neu 0.863
4 neu 0.825
Опять же, я ожидаю вставить пользователей с их твитами и настроениями и рекомендовать другого пользователя в данных, основанных на сходстве.