Spark Python Pyspark Как сгладить столбец с помощью массива словарей и встроенных словарей (вывод аннотатора sparknlp) - PullRequest
1 голос
/ 24 июня 2019

Я пытаюсь извлечь вывод из sparknlp (используя Pretrained Pipeline 'объяснение_document_dl'). Я потратил много времени в поисках путей (UDF, взрыва и т. Д.), Но не могу приблизиться к работоспособному решению. Скажем, я хочу получить значения извлечения под result и metadata из столбца entities. В этом столбце есть массив, содержащий несколько словарей

Когда я использую df.withColumn("entity_name", explode("entities.result")), извлекается только значение из первого словаря.

Содержимое столбца «сущности» представляет собой список словарей.

Попытка предоставить воспроизводимый пример / воссоздать фрейм данных (благодаря предложению, предоставленному @jonathan ниже):

# content of one cell as an example:
d = [{"annotatorType":"chunk","begin":2740,"end":2747,"result":"•Ability","metadata":{"entity":"ORG","sentence":"8","chunk":"22"},"embeddings":[],"sentence_embeddings":[]}, {"annotatorType":"chunk","begin":2740,"end":2747,"result":"Fedex","metadata":{"entity":"ORG","sentence":"8","chunk":"22"},"embeddings":[],"sentence_embeddings":[]}]

from pyspark.sql.types import StructType, StructField, StringType
from array import array
schema = StructType([StructField('annotatorType', StringType(), True),
                     StructField('begin', IntegerType(), True),
                     StructField('end', IntegerType(), True),
                     StructField('result', StringType(), True),
                     StructField('sentence', StringType(), True),
                     StructField('chunk', StringType(), True),
                     StructField('metadata', StructType((StructField('entity', StringType(), True),
                                                      StructField('sentence', StringType(), True),
                                                      StructField('chunk', StringType(), True)
                                                      )), True),
                     StructField('embeddings', StringType(), True),
                     StructField('sentence_embeddings', StringType(), True)
                    ]
                   )

df = spark.createDataFrame(d, schema=schema)
df.show()

В этом случае единый список словаря, он работает:

+-------------+-----+----+--------+--------+-----+------------+----------+-------------------+
|annotatorType|begin| end|  result|sentence|chunk|    metadata|embeddings|sentence_embeddings|
+-------------+-----+----+--------+--------+-----+------------+----------+-------------------+
|        chunk| 2740|2747|•Ability|    null| null|[ORG, 8, 22]|        []|                 []|
|        chunk| 2740|2747|   Fedex|    null| null|[ORG, 8, 22]|        []|                 []|
+-------------+-----+----+--------+--------+-----+------------+----------+-------------------+

Но я застрял на том, как применить это к столбцу, который содержит несколько ячеек с массивом из нескольких словарей (таким образом, несколько строк в исходной ячейке).

Я попытался применить ту же схему к столбцу entities, и мне пришлось сначала преобразовать столбец в json.

ent1 = ent1.withColumn("entities2", to_json("entities"))

enter image description here

Он работает для ячеек с массивом из 1 словаря, но дает null для ячеек, которые имеют массив из нескольких словарей (4-я строка):

ent1.withColumn("entities2", from_json("entities2", schema)).select("entities2.*").show()

+-------------+-----+----+------+--------+-----+------------+----------+-------------------+
|annotatorType|begin| end|result|sentence|chunk|    metadata|embeddings|sentence_embeddings|
+-------------+-----+----+------+--------+-----+------------+----------+-------------------+
|        chunk|  166| 169|  Lyft|    null| null|[MISC, 0, 0]|        []|                 []|
|        chunk|   11|  14|  Lyft|    null| null|[MISC, 0, 0]|        []|                 []|
|        chunk|   52|  55|  Lyft|    null| null|[MISC, 1, 0]|        []|                 []|
|         null| null|null|  null|    null| null|        null|      null|               null|
+-------------+-----+----+------+--------+-----+------------+----------+-------------------+

Желаемый вывод

+-------------+-----+----+----------------+------------------------+----------+-------------------+
|annotatorType|begin| end|         result |    metadata            |embeddings|sentence_embeddings|
+-------------+-----+----+----------------+------------------------+----------+-------------------+
|        chunk|  166| 169|Lyft            |[MISC]                  |        []|                 []|
|        chunk|   11|  14|Lyft            |[MISC]                  |        []|                 []|
|        chunk|   52|  55|Lyft.           |[MISC]                  |        []|                 []|
|        chunk| [..]|[..]|[Lyft,Lyft,     |[MISC,MISC,MISC,        |        []|                 []| 
|             |     |    |FedEx Ground..] |ORG,LOC,ORG,ORG,ORG,ORG]|          |                   |     
+-------------+-----+----+----------------+------------------------+----------+-------------------+

Я также пытался преобразовать в json для каждой строки, но я потерял след оригинальной строки, и мне дали льстивого сына:

new_df = sqlContext.read.json(ent2.rdd.map(lambda r: r.entities2))
new_df.show()
+-------------+-----+----------+----+------------+----------------+-------------------+
|annotatorType|begin|embeddings| end|    metadata|          result|sentence_embeddings|
+-------------+-----+----------+----+------------+----------------+-------------------+
|        chunk|  166|        []| 169|[0, MISC, 0]|            Lyft|                 []|
|        chunk|   11|        []|  14|[0, MISC, 0]|            Lyft|                 []|
|        chunk|   52|        []|  55|[0, MISC, 1]|            Lyft|                 []|
|        chunk|    0|        []|  11| [0, ORG, 0]|    FedEx Ground|                 []|
|        chunk|  717|        []| 720| [1, LOC, 4]|            Dock|                 []|
|        chunk|  811|        []| 816| [2, ORG, 5]|          Parcel|                 []|
|        chunk| 1080|        []|1095| [3, ORG, 6]|Parcel Assistant|                 []|
|        chunk| 1102|        []|1108| [4, ORG, 7]|         • Daily|                 []|
|        chunk| 1408|        []|1417| [5, ORG, 8]|      Assistants|                 []|
+-------------+-----+----------+----+------------+----------------+-------------------+

Я пытался применить UDF для просмотра списка массивов внутри "сущностей":

def flatten(my_dict):
    d_result = defaultdict(list)
    for sub in my_dict:
        val = sub['result']
        d_result["result"].append(val)
    return d_result["result"]
ent = ent.withColumn('result', flatten(df.entities))

TypeError: Column is not iterable

Я нашел это сообщение Apache Spark Read JSON с дополнительными столбцами очень напоминает мою проблему, но после преобразования столбца entities в json я все еще не могу решить ее с помощью решений, представленных в этом почта.

Любая помощь приветствуется! Идеально решения в python, но примеры в scala тоже полезны!

1 Ответ

2 голосов
/ 25 июня 2019

Причина получения null заключается в том, что переменная schema не совсем точно представляет список словарей, которые вы передаете в качестве данных

    from pyspark.shell import *
    from pyspark.sql.types import *

    schema = StructType([StructField('result', StringType(), True),
                 StructField('metadata', StructType((StructField('entity', StringType(), True),
                                                     StructField('sentence', StringType(), True),
                                                     StructField('chunk', StringType(), True))), True)])

    df = spark.createDataFrame(d1, schema=schema)
    df.show()

Если вы предпочитаете индивидуальное решение, вы можете попробовать подход чистого питона / панды

    import pandas as pd
    from pyspark.shell import *

    result = []
    metadata_entity = []
    for row in d1:
        result.append(row.get('result'))
        metadata_entity.append(row.get('metadata').get('entity'))

    schema = {'result': [result], 'metadata.entity': [metadata_entity]}
    pandas_df = pd.DataFrame(schema)

    df = spark.createDataFrame(pandas_df)
    df.show()

    # specific columns
    df.select('result','metadata.entity').show()

EDIT

ИМХО после прочтения всех подходов, которые вы пробовали, я думаю, что sc.parallelize все еще делает уловку для довольно сложных случаев. У меня нет вашей исходной переменной, но я могу распознать ваше изображение и взять его оттуда - хотя больше нет значений Classroom Teacher или Instructional . Надеюсь, это будет полезно для всех.

Вы всегда можете создать макет фрейма данных с нужной вам структурой и получить его схему

Для сложных случаев с вложенными типами данных вы можете использовать SparkContext и прочитать полученный формат JSON

    import itertools

    from pyspark.shell import *
    from pyspark.sql.functions import *
    from pyspark.sql.types import *

    # assume two lists in two dictionary keys to make four cells
    # since I don't have but entities2, I can just replicate it
    sample = {
        'single_list': [{'annotatorType': 'chunk', 'begin': '166', 'end': '169', 'result': 'Lyft',
                         'metadata': {'entity': 'MISC', 'sentence': '0', 'chunk': '0'}, 'embeddings': [],
                         'sentence_embeddings': []},
                        {'annotatorType': 'chunk', 'begin': '11', 'end': '14', 'result': 'Lyft',
                         'metadata': {'entity': 'MISC', 'sentence': '0', 'chunk': '0'}, 'embeddings': [],
                         'sentence_embeddings': []},
                        {'annotatorType': 'chunk', 'begin': '52', 'end': '55', 'result': 'Lyft',
                         'metadata': {'entity': 'MISC', 'sentence': '1', 'chunk': '0'}, 'embeddings': [],
                         'sentence_embeddings': []}],
        'frankenstein': [
            {'annotatorType': 'chunk', 'begin': '0', 'end': '11', 'result': 'FedEx Ground',
             'metadata': {'entity': 'ORG', 'sentence': '0', 'chunk': '0'}, 'embeddings': [],
             'sentence_embeddings': []},
            {'annotatorType': 'chunk', 'begin': '717', 'end': '720', 'result': 'Dock',
             'metadata': {'entity': 'LOC', 'sentence': '4', 'chunk': '1'}, 'embeddings': [],
             'sentence_embeddings': []},
            {'annotatorType': 'chunk', 'begin': '811', 'end': '816', 'result': 'Parcel',
             'metadata': {'entity': 'ORG', 'sentence': '5', 'chunk': '2'}, 'embeddings': [],
             'sentence_embeddings': []},
            {'annotatorType': 'chunk', 'begin': '1080', 'end': '1095', 'result': 'Parcel Assistant',
             'metadata': {'entity': 'ORG', 'sentence': '6', 'chunk': '3'}, 'embeddings': [],
             'sentence_embeddings': []},
            {'annotatorType': 'chunk', 'begin': '1102', 'end': '1108', 'result': '* Daily',
             'metadata': {'entity': 'ORG', 'sentence': '7', 'chunk': '4'}, 'embeddings': [],
             'sentence_embeddings': []},
            {'annotatorType': 'chunk', 'begin': '1408', 'end': '1417', 'result': 'Assistants',
             'metadata': {'entity': 'ORG', 'sentence': '8', 'chunk': '5'}, 'embeddings': [],
             'sentence_embeddings': []}]
    }

    # since they are structurally different, get two dataframes
    df_single_list = spark.read.json(sc.parallelize(sample.get('single_list')))
    df_frankenstein = spark.read.json(sc.parallelize(sample.get('frankenstein')))

    # print better the table first border
    print('\n')

    # list to create a dataframe schema
    annotatorType = []
    begin = []
    embeddings = []
    end = []
    metadata = []
    result = []
    sentence_embeddings = []

    # PEP8 here to have an UDF instead of lambdas
    # probably a dictionary with actions to avoid IF statements
    function_metadata = lambda x: [x.entity]
    for k, i in enumerate(df_frankenstein.columns):
        if i == 'annotatorType':
            annotatorType.append(df_frankenstein.select(i).rdd.flatMap(lambda x: x).collect())
        if i == 'begin':
            begin.append(df_frankenstein.select(i).rdd.flatMap(lambda x: x).collect())
        if i == 'embeddings':
            embeddings.append(df_frankenstein.select(i).rdd.flatMap(lambda x: x).collect())
        if i == 'end':
            end.append(df_frankenstein.select(i).rdd.flatMap(lambda x: x).collect())
        if i == 'metadata':
            _temp = list(map(function_metadata, df_frankenstein.select(i).rdd.flatMap(lambda x: x).collect()))
            metadata.append(list(itertools.chain.from_iterable(_temp)))
        if i == 'result':
            result.append(df_frankenstein.select(i).rdd.flatMap(lambda x: x).collect())
        if i == 'sentence_embeddings':
            sentence_embeddings.append(df_frankenstein.select(i).rdd.flatMap(lambda x: x).collect())

    # headers
    annotatorType_header = 'annotatorType'
    begin_header = 'begin'
    embeddings_header = 'embeddings'
    end_header = 'end'
    metadata_header = 'metadata'
    result_header = 'result'
    sentence_embeddings_header = 'sentence_embeddings'
    metadata_entity_header = 'metadata.entity'

    frankenstein_schema = StructType(
        [StructField(annotatorType_header, ArrayType(StringType())),
         StructField(begin_header, ArrayType(StringType())),
         StructField(embeddings_header, ArrayType(StringType())),
         StructField(end_header, ArrayType(StringType())),
         StructField(metadata_header, ArrayType(StringType())),
         StructField(result_header, ArrayType(StringType())),
         StructField(sentence_embeddings_header, ArrayType(StringType()))
         ])

    # list of lists of lists of lists of ... lists
    frankenstein_list = [[annotatorType, begin, embeddings, end, metadata, result, sentence_embeddings]]
    df_frankenstein = spark.createDataFrame(frankenstein_list, schema=frankenstein_schema)

    print(df_single_list.schema)
    print(df_frankenstein.schema)

    # let's see how it is
    df_single_list.select(
        annotatorType_header,
        begin_header,
        end_header,
        result_header,
        array(metadata_entity_header),
        embeddings_header,
        sentence_embeddings_header).show()

    # let's see again
    df_frankenstein.select(
        annotatorType_header,
        begin_header,
        end_header,
        result_header,
        metadata_header,
        embeddings_header,
        sentence_embeddings_header).show()

Выход:

    StructType(List(StructField(annotatorType,StringType,true),StructField(begin,StringType,true),StructField(embeddings,ArrayType(StringType,true),true),StructField(end,StringType,true),StructField(metadata,StructType(List(StructField(chunk,StringType,true),StructField(entity,StringType,true),StructField(sentence,StringType,true))),true),StructField(result,StringType,true),StructField(sentence_embeddings,ArrayType(StringType,true),true)))
    StructType(List(StructField(annotatorType,ArrayType(StringType,true),true),StructField(begin,ArrayType(StringType,true),true),StructField(embeddings,ArrayType(StringType,true),true),StructField(end,ArrayType(StringType,true),true),StructField(metadata,ArrayType(StringType,true),true),StructField(result,ArrayType(StringType,true),true),StructField(sentence_embeddings,ArrayType(StringType,true),true)))

    +-------------+-----+---+------+----------------------+----------+-------------------+
    |annotatorType|begin|end|result|array(metadata.entity)|embeddings|sentence_embeddings|
    +-------------+-----+---+------+----------------------+----------+-------------------+
    |        chunk|  166|169|  Lyft|                [MISC]|        []|                 []|
    |        chunk|   11| 14|  Lyft|                [MISC]|        []|                 []|
    |        chunk|   52| 55|  Lyft|                [MISC]|        []|                 []|
    +-------------+-----+---+------+----------------------+----------+-------------------+
    +--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+
    |       annotatorType|               begin|                 end|              result|            metadata|          embeddings| sentence_embeddings|
    +--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+
    |[[chunk, chunk, c...|[[0, 717, 811, 10...|[[11, 720, 816, 1...|[[FedEx Ground, D...|[[ORG, LOC, ORG, ...|[[[], [], [], [],...|[[[], [], [], [],...|
    +--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+

Вам придется выбирать из каждого фрейма данных отдельно, так как они различаются по типам данных, но контент готов (если я понял ваше требование по выводу) потреблять

(͡ ° ͜ʖ ͡ °)

...