Я пытаюсь создать диаграмму рассеяния ggplot, которая добавляет один из трех слоев в зависимости от опции feature
, предоставленной функции tsnePlotSubcluster
:
feature = c("subcluster" , "area" , "age")
Если feature == "subcluster"
, добавленный слой должен отображать точки (ячейки), принадлежащие указанному подкластеру.
Если feature == "area"
, добавленный слой должен отобразить ту же принадлежность к указанному подкластеру, но на этот раз окрашенную по их площади.
Если feature == "age"
, добавленный слой должен отображать ту же принадлежность к указанному подкластеру, но на этот раз окрашенную по их площади.
Я могу сделать это в 3 разных функциях, но когда я пытаюсь добавить их в одну функцию с помощью операторов if
, я получаю следующую ошибку:
tsne.clust <- tsnePlotSubcluster(subclust = "cluster_2", feature = "area")
Error: Cannot add ggproto objects together.
Did you forget to add this object to a ggplot object?
df
выглядит так: (представьте ниже)
cell.name tSNE_1 tSNE_2 nGene Age area subcluster.merge
18513 TCAGCAATCCCTCAGT_235875 17.1932545 20.9951805 994 25 parietal cluster_23
45195 CACATTTAGTGTACCT_55869 2.0990437 -3.1644088 605 14 motor cluster_16
437 ACTGCTCAGCTGGAAC_60204 14.3391798 5.7986418 919 17 occipital cluster_12-35
47652 TTGAACGAGCGGCTTC_24246 -2.4054652 -5.7217611 617 17 motor cluster_16
3079 CTGAAGTGTCCGAGTC_36162 13.3077568 -9.8810075 2360 19 parietal cluster_10-34
73692 TACGGTATCCACGTTC_43045 -3.9540697 -22.1901588 757 25 insula cluster_19-20-40
78111 ACGGGTCAGGAGTTGC_52675 -8.2138674 -5.6368533 680 14 motor cluster_11
77792 TTGAACGGTCTAGAGG_46399 -4.8505234 -17.3649528 1495 25 insula cluster_19-20-40
80576 ACGAGGACACCCAGTG_43377 4.7608973 12.3166870 652 17 PFC cluster_27
40102 CTAGCCTTCGGATGTT_108090 -26.0839271 -6.0513843 2877 18 occipital cluster_17
75778 GAATGAATCGAACGGA_122697 -0.8466168 -21.6881664 681 25 PFC cluster_19-20-40
64808 CTGGTCTCAGTCCTTC_220448 1.4123929 23.1787489 1275 25 parietal cluster_21
31050 CGATGGCGTCGCCATG_107147 12.7008032 -23.3682646 1457 25 temporal cluster_5-24
40011 AAGGCAGCAAGCCCAC_103547 -15.8308776 -9.0420539 2830 18 occipital cluster_15
23802 TTAGGCACATCGGTTA_224119 25.8490750 5.6472168 2354 25 parietal cluster_7-39
55771 CGGAGTCGTGACGCCT_22310 -0.1658289 9.2474600 920 22 motor cluster_13
62142 TAGAGCTAGGTGACCA_270328 -1.8325109 -12.8780762 2493 25 cingulate cluster_4
85340 AGGTCATCAAGCGATG_108496 -18.5638069 19.3544782 1054 20 motor cluster_21
31185 TGGCCAGGTGCTGTAT_271635 5.3272499 -19.8372034 1557 25 cingulate cluster_29
496 AGAGTGGGTTGTGGCC_10259 11.5646170 11.4089743 1549 18 hippocampus cluster_8
2513 GATCTAGTCCAAGCCG_14125 7.6368712 11.6917014 1756 19 motor cluster_8
52795 TACACGATCAGTCCCT_43422 -0.8565756 12.8355195 1534 20 PFC cluster_13
44355 TCTATTGGTCACAAGG_44401 -21.1689622 -8.1854890 1382 25 insula cluster_1
96327 GATCTAGTCGCTTAGA_232432 -26.6976718 10.3691109 877 25 parietal cluster_3-33
41100 GTTACAGGTATGAAAC_43797 -21.6719857 0.6879885 1489 19 somatosensory cluster_3-33
Функция, в которой я пытаюсь объединить все 3 варианта построения графика:
tsnePlotSubcluster <- function(feature = "subcluster", # can be area, age, subcluster
subclust = "cluster_1",
size.grey = 0.25,
size.color = 0.3
) {
# params <- plot.params[[celltype]]
# cluster.colors <- color.values[[celltype]]$i
p <- ggplot(tsne.meta) +
# Plot cells in all other subclusters in grey.
geom_point(data = filter(tsne.meta, ! subcluster.merge == subclust),
aes(tSNE_1, tSNE_2, alpha = nGene),
colour = "grey90", size = size.grey) +
# a) Highlight subcluster:
# Plot cells from selected subcluster in color.
{if(feature == "subclust")
geom_point(data = filter(tsne.meta, subcluster.merge == subclust),
aes(tSNE_1, tSNE_2, color = nGene, alpha = nGene),
size = size.color) +
theme(legend.position = 'none') +
scale_color_viridis_c(option = "plasma", begin = 0.1, end = 0.6)} +
# b) Color subcluster cells by age:
{if(feature == "age")
geom_point(data = filter(tsne.meta, subcluster.merge == subclust),
aes(tSNE_1, tSNE_2, color = Age, alpha = nGene),
size = size.color) +
scale_color_viridis_d(option = "plasma") +
theme(legend.position = 'top')} +
# c) Color subcluster cells by area:
{if(feature == "area")
geom_point(data = filter(tsne.meta, subcluster.merge == subclust),
aes(tSNE_1, tSNE_2, color = area, alpha = nGene),
size = size.color) +
scale_color_viridis_d(option = "viridis") +
theme(legend.position = 'top')} +
labs(title = paste(celltype, "|", subclust)) +
theme(plot.subtitle = element_text(color="grey18", size=11, family="Helvetica", face = "plain", hjust = 0.5),
plot.title = element_text(color="grey18", size=12, family="Helvetica", face = "plain"),
axis.title = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.line = element_blank(),
panel.background = element_blank(),
panel.grid = element_blank()
)
return(p)
# png(paste0("tSNE_", celltype, "_", subclust,".png"), height = 5, width = 6, units = 'in', res = 300)
# print(p)
# dev.off()
}
reprex:
df <-
data.frame(stringsAsFactors=FALSE,
cell.name = c("TCAGCAATCCCTCAGT_235875", "CACATTTAGTGTACCT_55869",
"ACTGCTCAGCTGGAAC_60204", "TTGAACGAGCGGCTTC_24246",
"CTGAAGTGTCCGAGTC_36162", "TACGGTATCCACGTTC_43045",
"ACGGGTCAGGAGTTGC_52675", "TTGAACGGTCTAGAGG_46399",
"ACGAGGACACCCAGTG_43377", "CTAGCCTTCGGATGTT_108090",
"GAATGAATCGAACGGA_122697", "CTGGTCTCAGTCCTTC_220448",
"CGATGGCGTCGCCATG_107147", "AAGGCAGCAAGCCCAC_103547",
"TTAGGCACATCGGTTA_224119", "CGGAGTCGTGACGCCT_22310", "TAGAGCTAGGTGACCA_270328",
"AGGTCATCAAGCGATG_108496", "TGGCCAGGTGCTGTAT_271635",
"AGAGTGGGTTGTGGCC_10259", "GATCTAGTCCAAGCCG_14125",
"TACACGATCAGTCCCT_43422", "TCTATTGGTCACAAGG_44401",
"GATCTAGTCGCTTAGA_232432", "GTTACAGGTATGAAAC_43797"),
tSNE_1 = c(17.1932545445726, 2.09904373658087, 14.3391798285586,
-2.40546521130513, 13.3077567635534, -3.95406970706742,
-8.21386742612947, -4.85052336705468, 4.7608973116436,
-26.0839270936647, -0.846616803167701, 1.41239293190578,
12.7008032319829, -15.8308775924386, 25.8490750248658,
-0.165828934667098, -1.83251089783584, -18.5638068984438,
5.32724992630323, 11.5646169818198, 7.63687124491221,
-0.856575609921843, -21.168962152839, -26.6976718473189,
-21.6719856501443),
tSNE_2 = c(20.9951805427067, -3.16440882112687, 5.79864177543435,
-5.7217611348367, -9.88100746982017, -22.1901588447411,
-5.63685325798171, -17.3649528368626, 12.3166870135148,
-6.05138433224201, -21.6881664091744, 23.1787488609378,
-23.3682646369907, -9.04205394614397, 5.64721677110778,
9.24746000688929, -12.8780761893534, 19.3544781941349,
-19.8372034367375, 11.4089743263254, 11.6917014190321,
12.8355194625476, -8.18548902054804, 10.3691108842176,
0.687988510819477),
nGene = c(994L, 605L, 919L, 617L, 2360L, 757L, 680L, 1495L, 652L,
2877L, 681L, 1275L, 1457L, 2830L, 2354L, 920L, 2493L,
1054L, 1557L, 1549L, 1756L, 1534L, 1382L, 877L, 1489L),
Age = c(25L, 14L, 17L, 17L, 19L, 25L, 14L, 25L, 17L, 18L, 25L,
25L, 25L, 18L, 25L, 22L, 25L, 20L, 25L, 18L, 19L, 20L,
25L, 25L, 19L),
area = c("parietal", "motor", "occipital", "motor", "parietal",
"insula", "motor", "insula", "PFC", "occipital", "PFC",
"parietal", "temporal", "occipital", "parietal",
"motor", "cingulate", "motor", "cingulate", "hippocampus",
"motor", "PFC", "insula", "parietal", "somatosensory"),
subcluster.merge = c("cluster_23", "cluster_16", "cluster_12-35",
"cluster_16", "cluster_10-34", "cluster_19-20-40",
"cluster_11", "cluster_19-20-40", "cluster_27", "cluster_17",
"cluster_19-20-40", "cluster_21", "cluster_5-24",
"cluster_15", "cluster_7-39", "cluster_13", "cluster_4",
"cluster_21", "cluster_29", "cluster_8", "cluster_8",
"cluster_13", "cluster_1", "cluster_3-33", "cluster_3-33")
)