Попробуйте установить следующие 2 варианта.
pd.set_option("display.max_columns", df.columns.shape[0])
pd.set_option("display.max_rows", df.index.shape[0])
Ниже я привел простой пример, он может помочь вам исправить это. Просто взгляните на это, поймите и попробуйте.
>>> import pandas as pd
>>>
>>> d = {
... "fullname": ["R A", "X Y", "P K", "X Y", "D R", "R A", "R E", "X Y"],
... "age": [26, 25, 50, 34, 67, 89, 50, 26],
... "profession": ["Python Developer", "Node Developer", "Django Developer", "JS Developer", "Python Developer", "Node Developer", "Node Developer", "Python Developer"]
... }
>>>
>>> df = pd.DataFrame(d)
>>> df
fullname age profession
0 R A 26 Python Developer
1 X Y 25 Node Developer
2 P K 50 Django Developer
3 X Y 34 JS Developer
4 D R 67 Python Developer
5 R A 89 Node Developer
6 R E 50 Node Developer
7 X Y 26 Python Developer
>>>
>>> group1 = df.groupby("fullname")
>>> group2 = df.groupby("age")
>>> group3 = df.groupby("profession")
>>>
>>> group1
<pandas.core.groupby.groupby.DataFrameGroupBy object at 0x101209a90>
>>>
>>> group1.groups
{'D R': Int64Index([4], dtype='int64'), 'P K': Int64Index([2], dtype='int64'), 'R A': Int64Index([0, 5], dtype='int64'), 'R E': Int64Index([6], dtype='int64'), 'X Y': Int64Index([1, 3, 7], dtype='int64')}
>>>
>>> group1.get_group("R A")
fullname age profession
0 R A 26 Python Developer
5 R A 89 Node Developer
>>>
>>> group1.get_group("R E")
fullname age profession
6 R E 50 Node Developer
>>>
>>> group1.get_group("P K")
fullname age profession
2 P K 50 Django Developer
>>>
>>> for group in group1.groups:
... print(group)
...
D R
P K
R A
R E
X Y
>>> for group in group1.groups:
... print(group1.get_group(group))
...
fullname age profession
4 D R 67 Python Developer
fullname age profession
2 P K 50 Django Developer
fullname age profession
0 R A 26 Python Developer
5 R A 89 Node Developer
fullname age profession
6 R E 50 Node Developer
fullname age profession
1 X Y 25 Node Developer
3 X Y 34 JS Developer
7 X Y 26 Python Developer
>>>
>>> group1.get_group("R A")
fullname age profession
0 R A 26 Python Developer
5 R A 89 Node Developer
>>>
>>> pd.set_option("display.max_columns", 2)
>>> group1.get_group("R A")
fullname ... profession
0 R A ... Python Developer
5 R A ... Node Developer
[2 rows x 3 columns]
>>>
>>> ra_group = group1.get_group("R A")
>>> ra_columns = ra_group.columns
>>> ra_columns
Index(['fullname', 'age', 'profession'], dtype='object')
>>>
>>> ra_columns.ndim
1
>>> ra_columns.size
3
>>> ra_columns.shape
(3,)
>>>
>>> pd.set_option("display.max_columns", ra_columns.shape[0])
>>> group1.get_group("R A")
fullname age profession
0 R A 26 Python Developer
5 R A 89 Node Developer
>>>
>>> ra_group
fullname age profession
0 R A 26 Python Developer
5 R A 89 Node Developer
>>>
>>> ra_group.index
Int64Index([0, 5], dtype='int64')
>>>
>>> ra_group.index.shape
(2,)
>>> pd.set_option("display.max_rows", ra_group.index.shape[0])
>>> ra_group
fullname age profession
0 R A 26 Python Developer
5 R A 89 Node Developer
>>>
>>> pd.set_option("display.max_rows", ra_group.index.shape[0] - 1)
>>> ra_group
fullname age profession
0 R A 26 Python Developer
.. ... ... ...
[2 rows x 3 columns]
>>>