Я хотел бы создать конкретный тип визуализации, состоящий из довольно простого точечного графика , но с изюминкой: обе оси являются категориальными переменными (то есть порядковыми или нечисловыми значениями). И это усложняет дело, а не облегчает его.
Чтобы проиллюстрировать этот вопрос, я буду использовать небольшой примерный набор данных, который является модификацией seaborn.load_dataset("tips")
и определен так:
import pandas
from six import StringIO
df = """total_bill | tip | sex | smoker | day | time | size
16.99 | 1.01 | Male | No | Mon | Dinner | 2
10.34 | 1.66 | Male | No | Sun | Dinner | 3
21.01 | 3.50 | Male | No | Sun | Dinner | 3
23.68 | 3.31 | Male | No | Sun | Dinner | 2
24.59 | 3.61 | Female | No | Sun | Dinner | 4
25.29 | 4.71 | Female | No | Mon | Lunch | 4
8.77 | 2.00 | Female | No | Tue | Lunch | 2
26.88 | 3.12 | Male | No | Wed | Lunch | 4
15.04 | 3.96 | Male | No | Sat | Lunch | 2
14.78 | 3.23 | Male | No | Sun | Lunch | 2"""
df = pandas.read_csv(StringIO(df.replace(' ','')), sep="|", header=0)
Мой первый подход к созданию моего графа состоял в том, чтобы попробовать вызвать seaborn
как таковой:
import seaborn
axes = seaborn.pointplot(x="time", y="sex", data=df)
Это не с:
ValueError: Neither the `x` nor `y` variable appears to be numeric.
Как и эквивалентные seaborn.stripplot
и seaborn.swarmplot
звонки. Это работает, однако, если одна из переменных является категориальной, а другая числовой. Действительно seaborn.pointplot(x="total_bill", y="sex", data=df)
работает, но это не то, что я хочу.
Я также попытался создать диаграмму рассеяния, например:
axes = seaborn.scatterplot(x="time", y="sex", size="day", data=df,
x_jitter=True, y_jitter=True)
Создает следующий график, который не содержит дрожания и перекрывает все точки, что делает его бесполезным:
Вам известен какой-нибудь элегантный подход или библиотека, которая могла бы решить мою проблему?
Я сам начал что-то писать, что я включу ниже, но эта реализация неоптимальна и ограничена количеством точек, которые могут перекрываться в одной и той же точке (в настоящее время она терпит неудачу, если перекрывается более 4 точек).
# Modules #
import seaborn, pandas, matplotlib
from six import StringIO
################################################################################
def amount_to_offets(amount):
"""A function that takes an amount of overlapping points (e.g. 3)
and returns a list of offsets (jittered) coordinates for each of the
points.
It follows the logic that two points are displayed side by side:
2 -> * *
Three points are organized in a triangle
3 -> *
* *
Four points are sorted into a square, and so on.
4 -> * *
* *
"""
assert isinstance(amount, int)
solutions = {
1: [( 0.0, 0.0)],
2: [(-0.5, 0.0), ( 0.5, 0.0)],
3: [(-0.5, -0.5), ( 0.0, 0.5), ( 0.5, -0.5)],
4: [(-0.5, -0.5), ( 0.5, 0.5), ( 0.5, -0.5), (-0.5, 0.5)],
}
return solutions[amount]
################################################################################
class JitterDotplot(object):
def __init__(self, data, x_col='time', y_col='sex', z_col='tip'):
self.data = data
self.x_col = x_col
self.y_col = y_col
self.z_col = z_col
def plot(self, **kwargs):
# Load data #
self.df = self.data.copy()
# Assign numerical values to the categorical data #
# So that ['Dinner', 'Lunch'] becomes [0, 1] etc. #
self.x_values = self.df[self.x_col].unique()
self.y_values = self.df[self.y_col].unique()
self.x_mapping = dict(zip(self.x_values, range(len(self.x_values))))
self.y_mapping = dict(zip(self.y_values, range(len(self.y_values))))
self.df = self.df.replace({self.x_col: self.x_mapping, self.y_col: self.y_mapping})
# Offset points that are overlapping in the same location #
# So that (2.0, 3.0) becomes (2.05, 2.95) for instance #
cols = [self.x_col, self.y_col]
scaling_factor = 0.05
for values, df_view in self.df.groupby(cols):
offsets = amount_to_offets(len(df_view))
offsets = pandas.DataFrame(offsets, index=df_view.index, columns=cols)
offsets *= scaling_factor
self.df.loc[offsets.index, cols] += offsets
# Plot a standard scatter plot #
g = seaborn.scatterplot(x=self.x_col, y=self.y_col, size=self.z_col, data=self.df, **kwargs)
# Force integer ticks on the x and y axes #
locator = matplotlib.ticker.MaxNLocator(integer=True)
g.xaxis.set_major_locator(locator)
g.yaxis.set_major_locator(locator)
g.grid(False)
# Expand the axis limits for x and y #
margin = 0.4
xmin, xmax, ymin, ymax = g.get_xlim() + g.get_ylim()
g.set_xlim(xmin-margin, xmax+margin)
g.set_ylim(ymin-margin, ymax+margin)
# Replace ticks with the original categorical names #
g.set_xticklabels([''] + list(self.x_mapping.keys()))
g.set_yticklabels([''] + list(self.y_mapping.keys()))
# Return for display in notebooks for instance #
return g
################################################################################
# Graph #
graph = JitterDotplot(data=df)
axes = graph.plot()
axes.figure.savefig('jitter_dotplot.png')