Я изучаю ML, нейронные сети на множестве MNIST, и у меня проблема с функциейgnast_proba.Я хочу получить вероятность предсказания, сделанного моей моделью, но когда я вызываю функцию предиката_процесса, я всегда получаю массив типа [0, 0, 1., 0, 0, ...], что означает, что модель всегда предсказывает с вероятностью 100%.
Не могли бы вы сказать мне, что не так в моей модели, почему это происходит и как это исправить?
Моя модель выглядит так:
# Load MNIST data set and split to train and test sets
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
# Reshaping to format which CNN expects (batch, height, width, channels)
train_images = train_images.reshape(train_images.shape[0], train_images.shape[1], train_images.shape[2], 1).astype(
"float32")
test_images = test_images.reshape(test_images.shape[0], test_images.shape[1], test_images.shape[2], 1).astype("float32")
# Normalize images from 0-255 to 0-1
train_images /= 255
test_images /= 255
# Use one hot encode to set classes
number_of_classes = 10
train_labels = keras.utils.to_categorical(train_labels, number_of_classes)
test_labels = keras.utils.to_categorical(test_labels, number_of_classes)
# Create model, add layers
model = Sequential()
model.add(Conv2D(32, (5, 5), input_shape=(train_images.shape[1], train_images.shape[2], 1), activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3), activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(128, activation="relu"))
model.add(Dropout(0.5))
model.add(Dense(number_of_classes, activation="softmax"))
# Compile model
model.compile(loss="categorical_crossentropy", optimizer=Adam(), metrics=["accuracy"])
# Learn model
model.fit(train_images, train_labels, validation_data=(test_images, test_labels), epochs=7, batch_size=200)
# Test obtained model
score = model.evaluate(test_images, test_labels, verbose=0)
print("Model loss = {}".format(score[0]))
print("Model accuracy = {}".format(score[1]))
# Save model
model_filename = "cnn_model.h5"
model.save(model_filename)
print("CNN model saved in file: {}".format(model_filename))
Для загрузки изображения Iиспользуйте PIL и NP.Я сохраняю модель, используя функцию сохранения из keras, и загружаю ее в другой скрипт, используя load_model из keras.models, а затем просто вызываю
def load_image_for_cnn(filename):
img = Image.open(filename).convert("L")
img = np.resize(img, (28, 28, 1))
im2arr = np.array(img)
return im2arr.reshape(1, 28, 28, 1)
def load_cnn_model(self):
return load_model("cnn_model.h5")
def predict_probability(self, image):
return self.model.predict_proba(image)[0]
. Использование выглядит следующим образом:
predictor.predict_probability(predictor.load_image_for_cnn(filename))