Я хотел бы рассчитать доверительные интервалы, используя дельта-метод или начальную загрузку для нелинейной модели (кривая логистического роста) с двусторонним взаимодействием, но я не уверен, как это кодировать.Этот пост похож на этот https://stats.stackexchange.com/questions/231074/confidence-intervals-on-predictions-for-a-non-linear-mixed-model-nlme. Тем не менее, я не знаю, как изменить его, чтобы иметь дело с термином взаимодействия.Я использую фрейм данных ChickWeight, но я изменил его, чтобы кривые были более сигмоидальными / выглядели аналогично фрейму данных, который я использую.
До сих пор я пробовал загрузку безуспешно.
library(tidyverse)
library(broom)
library(nlme)
# Modify df so that there are more subjects (Chicks) per treatment (Diet)
Chicks.df <- ChickWeight
Chicks.df$Chick <- factor(Chicks.df$Chick, ordered=F)
Chicks.df <- Chicks.df %>% mutate(Diet = ifelse(Diet == 3 | Diet == 4, 2, 1),
Diet = as.factor(Diet))
# Create df with an additional time point (25th) to make curves more sigmoidal
t.25_diet1 <- rnorm(30, mean=178, sd=1) # new observations for Diet1
t.25_diet2 <- rnorm(20, mean=215, sd=1) # new observations for Diet2
weight <- c(t.23_diet1, t.23_diet2) # bind vectors together
Diet <- c(rep(1,30), rep(2,20)) # Create remaining variables for df
Chick <- c(seq(1:30), seq(31, 50))
Time <- rep(25, 50)
# Bind variables together to make new df, and then combine with original df (i.e. Chicks.df)
newdata <- data.frame(cbind(weight, Diet, Chick, Time))
newdata$Diet <- as.factor(newdata$Diet)
newdata$Chick <- as.factor(newdata$Chick)
Chicks.df <- bind_rows(Chicks.df, data.frame(newdata))
# Using nested ifelse, assign half of the individuals in each diet to new treatment
Chicks.df <- Chicks.df %>% mutate(Drug =
ifelse(Chick %in% c(1:15) &
Diet == 1, 0,
ifelse(Chick %in% c(16:30) &
Diet == 1, 1,
ifelse(Chick %in%
c(31:40) & Diet
== 2, 0, 1))))
# Check Curves
Chicks.df$Drug <- as.factor(Chicks.df$Drug)
ggplot(Chicks.df, aes(Time, weight, col=Diet, linetype=Drug)) + geom_smooth()
# Get self-starting values (use broom pkg)
Chicks.df %>%
group_by(Diet, Drug) %>%
do(fit = nls(weight ~ SSlogis(Time, Asym, xmid, scal), data = .)) %>%
tidy(fit) %>%
select(Diet, Drug, term, estimate) %>%
spread(term, estimate)
# Run model
mod <-nlme(weight ~ SSlogis(Time, Asym, xmid, scal),
fixed=list(Asym + xmid + scal ~ Diet*Drug),
random = Asym ~ 1 | Chick,
start=list(fixed=c(Asym=c(209, 215, 209, 249),
xmid=c(10.2, 10.5, 10.7, 9.7),
scal=c(6.3, 6.3, 5.1, 5.5))),
data=Chicks.df)
summary(mod)
# Build prediction df and attempt bootstrapping
pframe <- data.frame(Time = Chicks.df$Time,
Diet = Chicks.df$Diet,
Drug = Chicks.df$Drug,
Chick = Chicks.df$Chick[1])
pframe$weight <- predict(mod, pframe, re.form=~0)
myfun <- function(data, x){
fBoot <- nlme(weight ~ SSlogis(Time, Asym, xmid, scal),
fixed=list(Asym + xmid + scal ~ Diet*Drug),
random = Asym ~ 1 | Chick,
start=list(fixed=c(Asym=c(209, 215, 209, 249),
xmid=c(10.2, 10.5, 10.7, 9.7),
scal=c(6.3, 6.3, 5.1, 5.5))),
data=Chicks.df)
return((predict(fBoot, newdata=pframe)))
}
myboot <- boot::boot(pframe, myfun, R=100)
myboot # no values predicted