Я пытаюсь провести простое моделирование идеального газа в соответствии с уравнением Клапейрона `pv = nkbT ', используя алгоритм Метрополиса Монте-Карло. Это очень простой пример, где я рассматриваю молекулы в 2D без взаимодействия друг с другом, и энергия равно E = pV, где V - область круга, содержащая все молекулы.
Моя проблема в том, что после очень небольшого количества шагов Монте-Карло объем моего газа всегда почти равен нулю, независимо от того, сколько молекул или давления я приложил. Я не могу понять, есть ли в моем коде ошибка, или это потому что у меня нет никаких взаимодействий молекул.
Вся помощь будет очень ценной, вот мой код
Мои результаты показаны на графике ниже, ось X - это шаги Монте-Карло, а ось Y - это объем, я ожидаю, что в результате не будет нулевого значения константы объема после большего числа шагов.
import numpy as np
import random
import matplotlib.pyplot as plt
def centroid(arr):
length = arr.shape[0]
sum_x = sum([i.x for i in arr])
sum_y = sum([i.y for i in arr])
return sum_x/length, sum_y/length
class Molecule:
def __init__(self, xpos, ypos):
self.pos = (xpos, ypos)
self.x = xpos
self.y = ypos
class IdealGas:
# CONSTANTS
def __init__(self, n,full_radius, pressure, T, number_of_runs):
gas = []
for i in range(0, n):
gas.append(Molecule(random.random() * full_radius,
random.random() * full_radius))
self.gas = np.array(gas)
self.center = centroid(self.gas)
self.small_radius = full_radius/4.
self.pressure = pressure
self.kbT = 9.36E-18 * T
self.n = n
self.number_of_runs = number_of_runs
def update_pos(self):
random_molecule = np.random.choice(self.gas)
old_state_x = random_molecule.x
old_state_y = random_molecule.y
old_radius = np.linalg.norm(np.array([old_state_x,old_state_y])-np.array([self.center[0],self.center[1]]))
energy_old = np.pi * self.pressure * old_radius**2
random_molecule.x = old_state_x + (random.random() * self.small_radius) * np.random.choice([-1, 1])
random_molecule.y = old_state_y + (random.random() * self.small_radius) * np.random.choice([-1, 1])
new_radius = np.linalg.norm(np.array([random_molecule.x,random_molecule.y])-np.array([self.center[0],self.center[1]]))
energy_new = np.pi * self.pressure * new_radius**2
if energy_new - energy_old <= 0.0:
return random_molecule
elif np.exp((-1.0 * (energy_new - energy_old)) / self.kbT) > random.random():
return random_molecule
else:
random_molecule.x = old_state_x
random_molecule.y = old_state_y
return random_molecule
def monte_carlo_step(self):
gas = []
for molecule in range(0, self.n):
gas.append(self.update_pos())
self.gas = np.array(gas)
#self.center = centroid(self.gas)
return self.gas
def simulation(self):
volume = []
for run in range(self.number_of_runs):
step_gas = self.monte_carlo_step()
step_centroid = centroid(step_gas)
step_radius = max([np.linalg.norm(np.array([gas.x,gas.y])-np.array([step_centroid[0],step_centroid[1]]))
for gas in step_gas])
step_volume = np.pi * step_radius**2
volume.append(step_volume)
return volume
Gas = IdealGas(500, 50, 1000, 300, 100)
vol = Gas.simulation()
plt.plot(vol)
plt.show()