Keras: Воспроизводимые результаты Simple MLP на CPU - PullRequest
1 голос
/ 12 июня 2019

Я создаю и тестирую простую модель MLP, но сталкиваюсь с проблемой воспроизводимости Keras для моих результатов. Я пытаюсь настроить свою нейронную сеть так, чтобы результаты прогнозирования не менялись при запуске сети.

Я уже следовал руководству по Keras онлайн, а также этому посту ( Воспроизводимые результаты с использованием Keras с бэкэндом TensorFlow ). Я запускаю Keras на своей локальной машине с бэкэндом Tensorflow и следующими версиями:

тензор потока 2.0.0-альфа0, керас 2.2.4-тф, numpy 1.16.0

import os  
os.environ['PYTHONHASHSEED']=str(0)

import random
random.seed(0)

from numpy.random import seed
seed(1)
import tensorflow as tf
tf.compat.v1.set_random_seed(2)

from keras import backend as K
session_conf = tf.compat.v1.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
sess = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph(), config=session_conf)
K.set_session(sess)

import numpy as np
from tensorflow.python.keras.layers import Dropout, BatchNormalization
from tensorflow.python.keras.optimizers import Adam
from galileo.time_series.machine_learning.classifiers import Machine_Learning_Classifier_Base
from galileo.util.time_util import TimerContextManager


class Machine_Learning_Classifier_Keras(object):    
    @classmethod
    def _get_classifier(cls, n_input_features=None, **params):
        KerasClassifier = tf.keras.wrappers.scikit_learn.KerasClassifier
        Dense = tf.keras.layers.Dense
        Sequential = tf.keras.models.Sequential

        sk_params = {"epochs": 200, "batch_size": 128, "shuffle": False}

        def create_model(optimizer='adam', init='he_normal'):
            # create model
            model = Sequential()
            model.add(BatchNormalization())
            model.add(Dropout(0.2))
            model.add(Dense(500, input_dim=4, kernel_initializer=init, activation='relu'))
            model.add(BatchNormalization())
            model.add(Dropout(0.2))
            model.add(Dense(250, kernel_initializer=init, activation='relu'))
            model.add(BatchNormalization())
            model.add(Dropout(0.2))
            model.add(Dense(500, kernel_initializer=init, activation='relu'))
            model.add(Dense(1, kernel_initializer=init, activation='sigmoid'))
            # Compile model
            model.compile(loss='binary_crossentropy', optimizer=Adam(lr=3e-3, decay=0.85), metrics=['accuracy'])
            return model

        return KerasClassifier(build_fn=create_model, **sk_params)

if __name__ == "__main__":
    X = np.asarray([[0.0, 0.0], [1.0, 1.0], [2.0, 2.5], [1.5, 1.6]])
    y = np.asarray([0, 0, 1, 1])

    nn = Machine_Learning_Classifier_Keras._get_classifier()
    nn.fit(X, y, sample_weight=np.asarray([0, 0, 1, 1]))

    values = np.asarray([[0.5, 0.5], [0.6, 0.5], [0.8, 1.0], [0.5, 0.5], [0.5, 0.5], [0.5, 0.5], [0.5, 0.5], [0.5, 0.5]])

    probas = nn.predict_proba(values)
    print(probas)

Я ожидаю, что мои результаты для значенийprep_proba останутся неизменными между запусками; Тем не менее, я получаю следующее для двух последовательных прогонов (результаты будут отличаться)

Run 1:
[[0.9439231  0.05607685]
 [0.91351616 0.08648387]
 [0.06378722 0.9362128 ]
 [0.9439231  0.05607685]
 [0.9439231  0.05607685]
 [0.9439231  0.05607685]
 [0.94392323 0.05607677]
 [0.94392323 0.05607677]]

Run 2:
[[0.94391584 0.05608419]
 [0.91350436 0.08649567]
 [0.06378281 0.9362172 ]
 [0.94391584 0.05608419]
 [0.94391584 0.05608419]
 [0.94391584 0.05608419]
 [0.94391584 0.05608416]
 [0.94391584 0.05608416]]
...