Я пытаюсь сделать 3d-игру с Java с нуля, но у меня проблема с рендерингом треугольника после того, как я умножил каждую вершину с помощью матрицы проекции
Я уже пытаюсь использовать спроецированные вершины x и y, но в результате все вершины находятся в одном и том же X, поэтому я пытаюсь повернуть треугольник X или Y или Z, но результат будет одинаковым.
Результат рендеринга (рисование краской):
Я знаю, что треугольник выровнен с камерой, но я попытался переместить перекрывающуюся вершину, изменив ее координаты X, Y или Z, но это не сработало
import java.awt.Color;
import java.awt.Graphics;
import measurement.MatrixF;
import measurement.Vector3f;
import model.Mesh;
import model.Triangle;
import toolbox.GE;
import toolbox.Matrix;
import toolbox.Vector;
public class MeshRenderer {
private int width, height;
private float fNear, fFar;
private float fov;
private float fAspectRatio;
private float fovRad;
private float theta;
private MatrixF projectionMatrix;
private MatrixF rotXMatrix;
private MatrixF rotYMatrix;
private MatrixF rotZMatrix;
private Vector3f globalTranslation;
public MeshRenderer(float fNear, float fFar, float fov, int width, int height) {
this.fNear = fNear;
this.fFar = fFar;
this.fov = fov;
this.fAspectRatio = height / width;
this.width = width;
this.height = height;
this.fovRad = (float) (1.0f / Math.tan(Math.toRadians(fov / 2)));
projectionMatrix = new MatrixF(4, 4);
rotXMatrix = new MatrixF(4, 4);
rotYMatrix = new MatrixF(4, 4);
rotZMatrix = new MatrixF(4, 4);
projectionMatrix.m[0][0] = fAspectRatio * fovRad;
projectionMatrix.m[1][1] = fovRad;
projectionMatrix.m[2][2] = (-(fFar + fNear)) / (fFar - fNear);
projectionMatrix.m[3][2] = (-2 * fFar * fNear) / (fFar - fNear);
projectionMatrix.m[2][3] = -1.0f;
projectionMatrix.m[3][3] = 0.0f;
rotXMatrix.m[0][0] = 1;
rotXMatrix.m[1][1] = (float) Math.cos(theta);
rotXMatrix.m[2][1] = (float) -Math.sin(theta);
rotXMatrix.m[1][2] = (float) Math.sin(theta);
rotXMatrix.m[2][2] = (float) Math.cos(theta);
rotYMatrix.m[0][0] = (float) Math.cos(theta);
rotYMatrix.m[2][0] = (float) Math.sin(theta);
rotYMatrix.m[1][1] = (float) 1.0;
rotYMatrix.m[0][2] = (float) -Math.sin(theta);
rotYMatrix.m[2][2] = (float) Math.cos(theta);
rotXMatrix.m[2][2] = 1;
rotXMatrix.m[0][0] = (float) Math.cos(theta);
rotXMatrix.m[1][0] = (float) -Math.sin(theta);
rotXMatrix.m[0][1] = (float) Math.sin(theta);
rotXMatrix.m[1][1] = (float) Math.cos(theta);
//projectionMatrix = Matrix.transpose(projectionMatrix);
globalTranslation = new Vector3f(0.0f, 0.0f, 0.0f);
}
public void renderMesh(Mesh mesh, Graphics g) {
for(int i = 0; i < mesh.tris.length; i++) {
Triangle tri = new Triangle(mesh.tris[i].p[0], mesh.tris[i].p[1], mesh.tris[i].p[2]);
Triangle translatedTri = tri;
Triangle projectedTri = new Triangle();
theta += 0.0001;
this.calculateRotationMatrix(theta);
translatedTri.p[0] = Matrix.multiplyMatrixVector(tri.p[0], rotYMatrix);
translatedTri.p[1] = Matrix.multiplyMatrixVector(tri.p[1], rotYMatrix);
translatedTri.p[2] = Matrix.multiplyMatrixVector(tri.p[2], rotYMatrix);
translatedTri.p[0].z = tri.p[0].z + globalTranslation.z;
translatedTri.p[1].z = tri.p[1].z + globalTranslation.z;
translatedTri.p[2].z = tri.p[2].z + globalTranslation.z;
projectedTri.p[0] = Matrix.multiplyMatrixVector(translatedTri.p[0], projectionMatrix);
projectedTri.p[1] = Matrix.multiplyMatrixVector(translatedTri.p[1], projectionMatrix);
projectedTri.p[2] = Matrix.multiplyMatrixVector(translatedTri.p[2], projectionMatrix);
projectedTri.p[0].x += 1.0f; projectedTri.p[0].y += 1.0f;
projectedTri.p[1].x += 1.0f; projectedTri.p[1].y += 1.0f;
projectedTri.p[2].x += 1.0f; projectedTri.p[2].y += 1.0f;
float scale = 0.5f;
projectedTri.p[0].x *= scale * width;
projectedTri.p[0].y *= scale * height;
projectedTri.p[1].x *= scale * width;
projectedTri.p[1].y *= scale * height;
projectedTri.p[2].x *= scale * width;
projectedTri.p[2].y *= scale * height;
GE.drawTriangle(projectedTri.p[0].x, projectedTri.p[0].y, projectedTri.p[1].x, projectedTri.p[1].y, projectedTri.p[2].x, projectedTri.p[2].y, Color.WHITE, g);
for(int j = 0; j < projectedTri.p.length; j++) {
g.setColor(new Color(255, 0, (j * 50)));
g.fillRect((int)projectedTri.p[j].x - 8, (int)projectedTri.p[j].y - 8, 16 - j, 16 - j);
}
translatedTri.p[0].z = tri.p[0].z - globalTranslation.z;
translatedTri.p[1].z = tri.p[1].z - globalTranslation.z;
translatedTri.p[2].z = tri.p[2].z - globalTranslation.z;
}
}
private void calculateRotationMatrix(float theta) {
rotXMatrix.m[0][0] = 1;
rotXMatrix.m[1][1] = (float) Math.cos(theta);
rotXMatrix.m[2][1] = (float) -Math.sin(theta);
rotXMatrix.m[1][2] = (float) Math.sin(theta);
rotXMatrix.m[2][2] = (float) Math.cos(theta);
rotYMatrix.m[0][0] = (float) Math.cos(theta);
rotYMatrix.m[2][0] = (float) Math.sin(theta);
rotYMatrix.m[1][1] = (float) 1.0;
rotYMatrix.m[0][2] = (float) -Math.sin(theta);
rotYMatrix.m[2][2] = (float) Math.cos(theta);
rotXMatrix.m[2][2] = 1;
rotXMatrix.m[0][0] = (float) Math.cos(theta);
rotXMatrix.m[1][0] = (float) -Math.sin(theta);
rotXMatrix.m[0][1] = (float) Math.sin(theta);
rotXMatrix.m[1][1] = (float) Math.cos(theta);
}
public Vector3f getTranslation() {
return globalTranslation;
}
public float getfNear() {
return fNear;
}
public float getfFar() {
return fFar;
}
public float getFov() {
return fov;
}
public float getfAspectRatio() {
return fAspectRatio;
}
public float getFovRad() {
return fovRad;
}
}
Матрица (4x4) умножается на функцию vector3 на всякий случай:
Vector3f o = new Vector3f(0, 0, 0);
o.x = (i.x * m.m[0][0]) + (i.y * m.m[1][0]) + (i.z * m.m[2][0]) + m.m[3][0];
o.y = (i.x * m.m[0][1]) + (i.y * m.m[1][1]) + (i.z * m.m[2][1]) + m.m[3][1];
o.z = (i.x * m.m[0][2]) + (i.y * m.m[1][2]) + (i.z * m.m[2][2]) + m.m[3][2];
float w = (i.x * m.m[0][3]) + (i.y * m.m[1][3]) + (i.z * m.m[2][3]) + m.m[3][3];
if (w != 0.0f)
{
o.x /= w; o.y /= w; o.z /= w;
}
return o;
}