Модель Opengl черная - PullRequest
       19

Модель Opengl черная

0 голосов
/ 11 июля 2019

Итак, я следовал руководству по opengl от Sonar Systems, которое позволило мне загружать модели.Это работает для модели, которую он предоставил, однако, когда я помещаю в любую другую модель, это все черное.

Я видел других людей, которые столкнулись с проблемами, с которыми я столкнулся, и опробовали их решения, однако они, похоже, не работали.

Model.h:

#pragma once

#include <string>
#include <fstream>
#include <sstream>
#include <iostream>
#include <map>
#include <vector>

#include <GL/glew.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <SOIL2/SOIL2.h>
#include <assimp/Importer.hpp>
#include <assimp/scene.h>
#include <assimp/postprocess.h>

#include "Mesh.h"

using namespace std;

GLint TextureFromFile(const char* path, string directory);

class Model
{
public:
    /*  Functions   */
    // Constructor, expects a filepath to a 3D model.
    Model(const GLchar* path)
    {
        this->loadModel(path);
    }

    // Draws the model, and thus all its meshes
    void Draw(Shader shader)
    {
        for (GLuint i = 0; i < this->meshes.size(); i++)
        {
            this->meshes[i].Draw(shader);
        }
    }

private:
    /*  Model Data  */
    vector<Mesh> meshes;
    string directory;
    vector<Texture> textures_loaded;    // Stores all the textures loaded so far, optimization to make sure textures aren't loaded more than once.

    /*  Functions   */
    // Loads a model with supported ASSIMP extensions from file and stores the resulting meshes in the meshes vector.
    void loadModel(string path)
    {
        // Read file via ASSIMP
        Assimp::Importer importer;
        const aiScene* scene = importer.ReadFile(path, aiProcess_Triangulate | aiProcess_FlipUVs);

        // Check for errors
        if (!scene || scene->mFlags == AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode) // if is Not Zero
        {
            cout << "ERROR::ASSIMP:: " << importer.GetErrorString() << endl;
            return;
        }
        // Retrieve the directory path of the filepath
        this->directory = path.substr(0, path.find_last_of('/'));

        // Process ASSIMP's root node recursively
        this->processNode(scene->mRootNode, scene);
    }

    // Processes a node in a recursive fashion. Processes each individual mesh located at the node and repeats this process on its children nodes (if any).
    void processNode(aiNode* node, const aiScene* scene)
    {
        // Process each mesh located at the current node
        for (GLuint i = 0; i < node->mNumMeshes; i++)
        {
            // The node object only contains indices to index the actual objects in the scene.
            // The scene contains all the data, node is just to keep stuff organized (like relations between nodes).
            aiMesh* mesh = scene->mMeshes[node->mMeshes[i]];

            this->meshes.push_back(this->processMesh(mesh, scene));
        }

        // After we've processed all of the meshes (if any) we then recursively process each of the children nodes
        for (GLuint i = 0; i < node->mNumChildren; i++)
        {
            this->processNode(node->mChildren[i], scene);
        }
    }

    Mesh processMesh(aiMesh* mesh, const aiScene* scene)
    {
        // Data to fill
        vector<Vertex> vertices;
        vector<GLuint> indices;
        vector<Texture> textures;

        // Walk through each of the mesh's vertices
        for (GLuint i = 0; i < mesh->mNumVertices; i++)
        {
            Vertex vertex;
            glm::vec3 vector; // We declare a placeholder vector since assimp uses its own vector class that doesn't directly convert to glm's vec3 class so we transfer the data to this placeholder glm::vec3 first.

            // Positions
            vector.x = mesh->mVertices[i].x;
            vector.y = mesh->mVertices[i].y;
            vector.z = mesh->mVertices[i].z;
            vertex.Position = vector;

            // Normals
            vector.x = mesh->mNormals[i].x;
            vector.y = mesh->mNormals[i].y;
            vector.z = mesh->mNormals[i].z;
            vertex.Normal = vector;

            // Texture Coordinates
            if (mesh->mTextureCoords[0]) // Does the mesh contain texture coordinates?
            {
                glm::vec2 vec;
                // A vertex can contain up to 8 different texture coordinates. We thus make the assumption that we won't
                // use models where a vertex can have multiple texture coordinates so we always take the first set (0).
                vec.x = mesh->mTextureCoords[0][i].x;
                vec.y = mesh->mTextureCoords[0][i].y;
                vertex.TexCoords = vec;
            }
            else
            {
                vertex.TexCoords = glm::vec2(0.0f, 0.0f);
            }

            vertices.push_back(vertex);
        }

        // Now wak through each of the mesh's faces (a face is a mesh its triangle) and retrieve the corresponding vertex indices.
        for (GLuint i = 0; i < mesh->mNumFaces; i++)
        {
            aiFace face = mesh->mFaces[i];
            // Retrieve all indices of the face and store them in the indices vector
            for (GLuint j = 0; j < face.mNumIndices; j++)
            {
                indices.push_back(face.mIndices[j]);
            }
        }

        // Process materials
        if (mesh->mMaterialIndex >= 0)
        {
            aiMaterial* material = scene->mMaterials[mesh->mMaterialIndex];
            // We assume a convention for sampler names in the shaders. Each diffuse texture should be named
            // as 'texture_diffuseN' where N is a sequential number ranging from 1 to MAX_SAMPLER_NUMBER.
            // Same applies to other texture as the following list summarizes:
            // Diffuse: texture_diffuseN
            // Specular: texture_specularN
            // Normal: texture_normalN

            // 1. Diffuse maps
            vector<Texture> diffuseMaps = this->loadMaterialTextures(material, aiTextureType_DIFFUSE, "texture_diffuse");
            textures.insert(textures.end(), diffuseMaps.begin(), diffuseMaps.end());

            // 2. Specular maps
            vector<Texture> specularMaps = this->loadMaterialTextures(material, aiTextureType_SPECULAR, "texture_specular");
            textures.insert(textures.end(), specularMaps.begin(), specularMaps.end());
        }

        // Return a mesh object created from the extracted mesh data
        return Mesh(vertices, indices, textures);
    }

    // Checks all material textures of a given type and loads the textures if they're not loaded yet.
    // The required info is returned as a Texture struct.
    vector<Texture> loadMaterialTextures(aiMaterial* mat, aiTextureType type, string typeName)
    {
        vector<Texture> textures;

        for (GLuint i = 0; i < mat->GetTextureCount(type); i++)
        {
            aiString str;
            mat->GetTexture(type, i, &str);

            // Check if texture was loaded before and if so, continue to next iteration: skip loading a new texture
            GLboolean skip = false;

            for (GLuint j = 0; j < textures_loaded.size(); j++)
            {
                if (textures_loaded[j].path == str)
                {
                    textures.push_back(textures_loaded[j]);
                    skip = true; // A texture with the same filepath has already been loaded, continue to next one. (optimization)

                    break;
                }
            }

            if (!skip)
            {   // If texture hasn't been loaded already, load it
                Texture texture;
                texture.id = TextureFromFile(str.C_Str(), this->directory);
                texture.type = typeName;
                texture.path = str;
                textures.push_back(texture);

                this->textures_loaded.push_back(texture);  // Store it as texture loaded for entire model, to ensure we won't unnecesery load duplicate textures.
            }
        }

        return textures;
    }
};

GLint TextureFromFile(const char* path, string directory)
{
    //Generate texture ID and load texture data
    string filename = string(path);
    filename = directory + '/' + filename;
    GLuint textureID;
    glGenTextures(1, &textureID);

    int width, height;

    unsigned char* image = SOIL_load_image(filename.c_str(), &width, &height, 0, SOIL_LOAD_RGB);

    // Assign texture to ID
    glBindTexture(GL_TEXTURE_2D, textureID);
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
    glGenerateMipmap(GL_TEXTURE_2D);

    // Parameters
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    glBindTexture(GL_TEXTURE_2D, 0);
    SOIL_free_image_data(image);

    return textureID;
}

Mesh.h:

#pragma once
#pragma comment(lib, "opengl32.lib")

#include <assimp/types.h>
#include <string>
#include <fstream>
#include <sstream>
#include <iostream>
#include <vector>

#include <Windows.h>H
#include <GL/glew.h>
#include <GL/GL.h>
#include <glm/glm.hpp>
#include <GLFW/glfw3.h>

#include <glm/gtc/matrix_transform.hpp>
#include "Shader.h"

using namespace std;

struct Vertex {
    glm::vec3 Position;
    glm::vec3 Normal;
    glm::vec2 TexCoords;

};

struct Texture {
    GLuint id;
    string type;
    aiString path;
};

class Mesh
{
public:
    /*  Mesh Data  */
    vector<Vertex> vertices;
    vector<GLuint> indices;
    vector<Texture> textures;

    /*  Functions  */
    // Constructor
    Mesh(vector<Vertex> vertices, vector<GLuint> indices, vector<Texture> textures)
    {
        this->vertices = vertices;
        this->indices = indices;
        this->textures = textures;

        // Now that we have all the required data, set the vertex buffers and its attribute pointers.
        this->setupMesh();
    }

    // Render the mesh
    void Draw(Shader shader)
    {
        // Bind appropriate textures
        GLuint diffuseNr = 1;
        GLuint specularNr = 1;

        for (GLuint i = 0; i < this->textures.size(); i++)
        {
            glActiveTexture(GL_TEXTURE0 + i); // Active proper texture unit before binding
            // Retrieve texture number (the N in diffuse_textureN)
            stringstream ss;
            string number;
            string name = this->textures[i].type;

            if (name == "texture_diffuse")
            {
                ss << diffuseNr++; // Transfer GLuint to stream
            }
            else if (name == "texture_specular")
            {
                ss << specularNr++; // Transfer GLuint to stream
            }

            number = ss.str();
            // Now set the sampler to the correct texture unit
            glUniform1i(glGetUniformLocation(shader.Program, (name + number).c_str()), i);
            // And finally bind the texture
            glBindTexture(GL_TEXTURE_2D, this->textures[i].id);
        }

        // Also set each mesh's shininess property to a default value (if you want you could extend this to another mesh property and possibly change this value)
        glUniform1f(glGetUniformLocation(shader.Program, "material.shininess"), 16.0f);

        // Draw mesh
        glBindVertexArray(this->VAO);
        glDrawElements(GL_TRIANGLES, this->indices.size(), GL_UNSIGNED_INT, 0);
        glBindVertexArray(0);

        // Always good practice to set everything back to defaults once configured.
        for (GLuint i = 0; i < this->textures.size(); i++)
        {
            glActiveTexture(GL_TEXTURE0 + i);
            glBindTexture(GL_TEXTURE_2D, 0);
        }
    }

private:
    /*  Render data  */
    GLuint VAO, VBO, EBO;

    /*  Functions    */
    // Initializes all the buffer objects/arrays
    void setupMesh()
    {
        // Create buffers/arrays
        glGenVertexArrays(1, &this->VAO);
        glGenBuffers(1, &this->VBO);
        glGenBuffers(1, &this->EBO);

        glBindVertexArray(this->VAO);
        // Load data into vertex buffers
        glBindBuffer(GL_ARRAY_BUFFER, this->VBO);
        // A great thing about structs is that their memory layout is sequential for all its items.
        // The effect is that we can simply pass a pointer to the struct and it translates perfectly to a glm::vec3/2 array which
        // again translates to 3/2 floats which translates to a byte array.
        glBufferData(GL_ARRAY_BUFFER, this->vertices.size() * sizeof(Vertex), &this->vertices[0], GL_STATIC_DRAW);

        glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->EBO);
        glBufferData(GL_ELEMENT_ARRAY_BUFFER, this->indices.size() * sizeof(GLuint), &this->indices[0], GL_STATIC_DRAW);

        // Set the vertex attribute pointers
        // Vertex Positions
        glEnableVertexAttribArray(0);
        glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (GLvoid*)0);
        // Vertex Normals
        glEnableVertexAttribArray(1);
        glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (GLvoid*)offsetof(Vertex, Normal));
        // Vertex Texture Coords
        glEnableVertexAttribArray(2);
        glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex), (GLvoid*)offsetof(Vertex, TexCoords));

        glBindVertexArray(0);
    }
};

Shader.h:

#pragma once
#ifndef SHADER_H
#define SHADER_H

#include <string>
#include <fstream>
#include <sstream>
#include <iostream>

#include <GL/glew.h>

class Shader
{
public:
    GLuint Program;
    // Constructor generates the shader on the fly
    Shader(const GLchar* vertexPath, const GLchar* fragmentPath)
    {
        // 1. Retrieve the vertex/fragment source code from filePath
        std::string vertexCode;
        std::string fragmentCode;
        std::ifstream vShaderFile;
        std::ifstream fShaderFile;
        // ensures ifstream objects can throw exceptions:
        vShaderFile.exceptions(std::ifstream::badbit);
        fShaderFile.exceptions(std::ifstream::badbit);
        try
        {
            // Open files
            vShaderFile.open(vertexPath);
            fShaderFile.open(fragmentPath);
            std::stringstream vShaderStream, fShaderStream;
            // Read file's buffer contents into streams
            vShaderStream << vShaderFile.rdbuf();
            fShaderStream << fShaderFile.rdbuf();
            // close file handlers
            vShaderFile.close();
            fShaderFile.close();
            // Convert stream into string
            vertexCode = vShaderStream.str();
            fragmentCode = fShaderStream.str();
        }
        catch (std::ifstream::failure e)
        {
            std::cout << "ERROR::SHADER::FILE_NOT_SUCCESFULLY_READ" << std::endl;
        }
        const GLchar* vShaderCode = vertexCode.c_str();
        const GLchar* fShaderCode = fragmentCode.c_str();
        // 2. Compile shaders
        GLuint vertex, fragment;
        GLint success;
        GLchar infoLog[512];
        // Vertex Shader
        vertex = glCreateShader(GL_VERTEX_SHADER);
        glShaderSource(vertex, 1, &vShaderCode, NULL);
        glCompileShader(vertex);
        // Print compile errors if any
        glGetShaderiv(vertex, GL_COMPILE_STATUS, &success);
        if (!success)
        {
            glGetShaderInfoLog(vertex, 512, NULL, infoLog);
            std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << std::endl;
        }
        // Fragment Shader
        fragment = glCreateShader(GL_FRAGMENT_SHADER);
        glShaderSource(fragment, 1, &fShaderCode, NULL);
        glCompileShader(fragment);
        // Print compile errors if any
        glGetShaderiv(fragment, GL_COMPILE_STATUS, &success);
        if (!success)
        {
            glGetShaderInfoLog(fragment, 512, NULL, infoLog);
            std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << infoLog << std::endl;
        }
        // Shader Program
        this->Program = glCreateProgram();
        glAttachShader(this->Program, vertex);
        glAttachShader(this->Program, fragment);
        glLinkProgram(this->Program);
        // Print linking errors if any
        glGetProgramiv(this->Program, GL_LINK_STATUS, &success);
        if (!success)
        {
            glGetProgramInfoLog(this->Program, 512, NULL, infoLog);
            std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << std::endl;
        }
        // Delete the shaders as they're linked into our program now and no longer necessery
        glDeleteShader(vertex);
        glDeleteShader(fragment);

    }
    // Uses the current shader
    void Use()
    {
        glUseProgram(this->Program);
    }
};

#endif

modelLoading.frag

#version 330 core

in vec2 TexCoords;

out vec4 color;

uniform sampler2D texture_diffuse;

void main( )
{
    color = vec4( texture( texture_diffuse, TexCoords ));
}

modelLoading.vert

#version 330 core
layout ( location = 0 ) in vec3 position;
layout ( location = 1 ) in vec3 normal;
layout ( location = 2 ) in vec2 texCoords;

out vec2 TexCoords;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main( )
{
    gl_Position = projection * view * model * vec4( position, 1.0f );
    TexCoords = texCoords;
}
...