Альтернативный подход заключается в использовании %within%
пакета lubridate()
:
library(lubridate)
# transform characters to dates
start_time <- as_datetime(df[ , "start"], tz = "UTC")
end_time <- as_datetime(df[ , "end"], tz = "UTC")
# construct intervals
start_end_intrvls <- interval(start_time, end_time)
# find indices of the non-within intervals
not_within <- !(sapply(FUN = function(i) any(start_end_intrvls[i] %within% start_end_intrvls[-i]),
X = seq(along.with = df[ , "start"])))
df[not_within, ]
# start end value
# 1 2018/04/15 9:00:00 2018/04/16 8:00:00 10
# 3 2018/04/16 10:20:00 2018/04/17 18:20:00 11
# 6 2018/04/17 18:50:00 2018/04/17 19:50:00 12
Обновление
Функция as_datetime()
вызывает ошибку при применении к таблице:
as_datetime(tibble("2018/04/15 9:00:00"), tz = "UTC")
Error in as.POSIXct.default(x) :
do not know how to convert 'x' to class “POSIXct”
Приведенное выше решение может быть изменено для решения этой проблемы с заменой as_datetime()
на as.POSIXlt()
:
df_tibble <- tibble(start=c("2018/04/15 9:00:00","2018/04/15 9:00:00","2018/04/16 10:20:00",
"2018/04/16 15:30:00", "2018/04/17 12:40:00","2018/04/17 18:50:00"),
end=c("2018/04/16 8:00:00","2018/04/16 7:10:00","2018/04/17 18:20:00","2018/04/16 16:30:00",
"2018/04/17 16:40:00","2018/04/17 19:50:00"), value=c(10,15,11,13,14,12))
start_time_lst <- lapply(FUN = function(i) as.POSIXlt(as.character(df_tibble[i , "start"]),
tz = "UTC"),
X = seq(along.with = unlist(df_tibble[ , "start"])))
end_time_lst <- lapply(FUN = function(i) as.POSIXlt(as.character(df_tibble[ i, "end"]),
tz = "UTC"),
X = seq(along.with = unlist(df_tibble[ , "end"])))
start_end_intrvls <- lapply(function(i) interval(start_time_lst[[i]] , end_time_lst[[i]]),
X = seq(along.with = unlist(df_tibble[ , "start"])))
not_within <- sapply(function(i) !(any(unlist(Map(`%within%`,
start_end_intrvls[[i]], start_end_intrvls[-i])))),
X = seq(along.with = unlist(df_tibble[ , "start"])))