Ошибка в сегментации изображения с использованием Unet и Keras - PullRequest
0 голосов
/ 25 августа 2018

Я использую модель Unet для сегментации спутниковых изображений с входами 512x512x3. Но при выполнении модели я получаю следующую ошибку: ValueError: Невозможно передать значение shape (3, 512, 512) для Tensor 'conv2d_19_target: 0', который имеет форму '(?,?,?,?)'. код для модели Unet:

from __future__ import print_function
import os
from skimage.transform import resize
from skimage.io import imsave
import numpy as np
from keras.models import Model
from keras.layers import Input, concatenate, Conv2D, MaxPooling2D,     Conv2DTranspose
from keras.optimizers import Adam

from keras.callbacks import ModelCheckpoint
from keras import backend as K
from data import load_train_data, load_test_data

K.set_image_data_format('channels_last')  # TF dimension ordering in this code

img_rows = 512
img_cols = 512
image_channels=3
smooth = 1.
OUTPUT_MASK_CHANNELS = 1


def dice_coef(y_true, y_pred):
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)
    intersection = K.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (K.sum(y_true_f) +    K.sum(y_pred_f) + smooth)

def dice_coef_loss(y_true, y_pred):
   return -dice_coef(y_true, y_pred)


def get_unet():
   inputs = Input((img_rows, img_cols, 3))
   conv1 = Conv2D(32, (3, 3), activation='relu', padding='same')(inputs)
   conv1 = Conv2D(32, (3, 3), activation='relu', padding='same')(conv1)
   pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)

   conv2 = Conv2D(64, (3, 3), activation='relu', padding='same')(pool1)
   conv2 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv2)
   pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)

   conv3 = Conv2D(128, (3, 3), activation='relu', padding='same')(pool2)
   conv3 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv3)
   pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)

   conv4 = Conv2D(256, (3, 3), activation='relu', padding='same')(pool3)
   conv4 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv4)
   pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)

   conv5 = Conv2D(512, (3, 3), activation='relu', padding='same')(pool4)
   conv5 = Conv2D(512, (3, 3), activation='relu', padding='same')(conv5)

   up6 = concatenate([Conv2DTranspose(256, (2, 2), strides=(2, 2), padding='same')(conv5), conv4], axis=3)
   conv6 = Conv2D(256, (3, 3), activation='relu', padding='same')(up6)
   conv6 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv6)

   up7 = concatenate([Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(conv6), conv3], axis=3)
   conv7 = Conv2D(128, (3, 3), activation='relu', padding='same')(up7)
   conv7 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv7)

   up8 = concatenate([Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(conv7), conv2], axis=3)
   conv8 = Conv2D(64, (3, 3), activation='relu', padding='same')(up8)
   conv8 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv8)

   up9 = concatenate([Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same')(conv8), conv1], axis=3)
   conv9 = Conv2D(32, (3, 3), activation='relu', padding='same')(up9)
   conv9 = Conv2D(32, (3, 3), activation='relu', padding='same')(conv9)

   conv_final = Conv2D(OUTPUT_MASK_CHANNELS, (1, 1),activation='sigmoid')(conv9)
   #conv_final = Activation('sigmoid')(conv_final)

   model = Model(inputs, conv_final, name="ZF_UNET_224")

   #conv10 = Conv2D(1, (1, 1), activation='sigmoid')(conv9)
   #model = Model(inputs=[inputs], outputs=[conv10])

   model.compile(optimizer=Adam(lr=1e-5), loss=dice_coef_loss, metrics=[dice_coef])

   return model


def preprocess(imgs):
   imgs_p = np.ndarray((imgs.shape[0], img_rows, img_cols),       dtype=np.uint8)
for i in range(imgs.shape[0]):
    imgs_p[i] = resize(imgs[i], (img_cols, img_rows), preserve_range=True)

imgs_p = imgs_p[..., np.newaxis]
return imgs_p


def train_and_predict():
   print('-'*30)
   print('Loading and preprocessing train data...')
   print('-'*30)
   imgs_train, imgs_mask_train = load_train_data()

   #imgs_train = preprocess(imgs_train)
   #imgs_mask_train = preprocess(imgs_mask_train)

   imgs_train = imgs_train.astype('float32')
   mean = np.mean(imgs_train)  # mean for data centering
   std = np.std(imgs_train)  # std for data normalization

   imgs_train -= mean
   imgs_train /= std

   imgs_mask_train = imgs_mask_train.astype('float32')
   imgs_mask_train /= 255.  # scale masks to [0, 1]

   print('-'*30)
   print('Creating and compiling model...')
   print('-'*30)
   model = get_unet()
   model_checkpoint = ModelCheckpoint('weights.h5', monitor='val_loss',    save_best_only=True)

   print('-'*30)
   print('Fitting model...')
   print('-'*30)
   model.fit(imgs_train, imgs_mask_train, batch_size=3, epochs=20,   verbose=2, shuffle=True,
          validation_split=0.2,
          callbacks=[model_checkpoint])

   print('-'*30)
   print('Loading and preprocessing test data...')
   print('-'*30)
   imgs_test, imgs_id_test = load_test_data()
   imgs_test = preprocess(imgs_test)

   imgs_test = imgs_test.astype('float32')
   imgs_test -= mean
   imgs_test /= std

   print('-'*30)
   print('Loading saved weights...')
   print('-'*30)
   model.load_weights('weights.h5')

   print('-'*30)
   print('Predicting masks on test data...')
   print('-'*30)
   imgs_mask_test = model.predict(imgs_test, verbose=1)
   np.save('imgs_mask_test.npy', imgs_mask_test)

   print('-' * 30)
   print('Saving predicted masks to files...')
   print('-' * 30)
   pred_dir = 'preds'
   if not os.path.exists(pred_dir):
       os.mkdir(pred_dir)
for image, image_id in zip(imgs_mask_test, imgs_id_test):
    image = (image[:, :, 0] * 255.).astype(np.uint8)
    imsave(os.path.join(pred_dir, str(image_id) + '_pred.png'), image)

if __name__ == '__main__':
train_and_predict()

Ошибка трассировки выглядит следующим образом:

File "/home/deeplearning/Downloads/Models/ultrasound-nerve-segmentation-master/train.py", line 158, in <module> train_and_predict()

  File "/home/deeplearning/Downloads/Models/ultrasound-nerve-segmentation-master/train.py", line 124, in train_and_predict callbacks=[model_checkpoint])

  File "/home/deeplearning/anaconda3/envs/myenv/lib/python3.6/site-packages/keras/engine/training.py", line 1037, in fit
    validation_steps=validation_steps)

  File "/home/deeplearning/anaconda3/envs/myenv/lib/python3.6/site-packages/keras/engine/training_arrays.py", line 199, in fit_loop
    outs = f(ins_batch)

  File "/home/deeplearning/anaconda3/envs/myenv/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py", line 2672, in __call__
    return self._legacy_call(inputs)

  File "/home/deeplearning/anaconda3/envs/myenv/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py", line 2654, in _legacy_call
    **self.session_kwargs)

  File "/home/deeplearning/anaconda3/envs/myenv/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 767, in run
    run_metadata_ptr)

  File "/home/deeplearning/anaconda3/envs/myenv/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 944, in _run
    % (np_val.shape, subfeed_t.name, str(subfeed_t.get_shape())))

ValueError: Cannot feed value of shape (3, 512, 512) for Tensor 'conv2d_19_target:0', which has shape '(?, ?, ?, ?)'

Плз, помогите мне найти, что в ней происходит не так

1 Ответ

0 голосов
/ 01 сентября 2018

Вы установили K.set_image_data_format('channels_last'), но ваше входное изображение (3 X 512 X 512) сначала имеет каналы.Либо измените значение на K.set_image_data_format('channels_first') (что может не работать для UNET), либо измените размеры входного изображения с помощью np.tranpose, чтобы иметь форму ввода (512,512,3).

...