get_query_results возвращает только 1000 строк.Как я могу использовать его, чтобы получить два миллиона строк в кадре данных Pandas?
Если вы попытаетесь добавить:
client.get_query_results(QueryExecutionId=res['QueryExecutionId'], MaxResults=2000)
Вы получите следующую ошибку:
Произошла ошибка (InvalidRequestException) при вызове операции GetQueryResults: MaxResults превышает максимально допустимую длину 1000.
Вы можете получить миллионы строк, если получите файл непосредственно из вашего ведра.s3 (в следующем примере в кадр данных Pandas):
def obtain_data_from_s3(self):
self.resource = boto3.resource('s3',
region_name = self.region_name,
aws_access_key_id = self.aws_access_key_id,
aws_secret_access_key= self.aws_secret_access_key)
response = self.resource \
.Bucket(self.bucket) \
.Object(key= self.folder + self.filename + '.csv') \
.get()
return pd.read_csv(io.BytesIO(response['Body'].read()), encoding='utf8')
Имя self.filename может быть:
self.filename = response['QueryExecutionId'] + ".csv"
Поскольку Афина называет файлы как QueryExecutionId.Я напишу вам весь мой код, который принимает запрос и возвращает кадр данных со всеми строками и столбцами.
import time
import boto3
import pandas as pd
import io
class QueryAthena:
def __init__(self, query, database):
self.database = database
self.folder = 'my_folder/'
self.bucket = 'my_bucket'
self.s3_input = 's3://' + self.bucket + '/my_folder_input'
self.s3_output = 's3://' + self.bucket + '/' + self.folder
self.region_name = 'us-east-1'
self.aws_access_key_id = "my_aws_access_key_id"
self.aws_secret_access_key = "my_aws_secret_access_key"
self.query = query
def load_conf(self, q):
try:
self.client = boto3.client('athena',
region_name = self.region_name,
aws_access_key_id = self.aws_access_key_id,
aws_secret_access_key= self.aws_secret_access_key)
response = self.client.start_query_execution(
QueryString = q,
QueryExecutionContext={
'Database': self.database
},
ResultConfiguration={
'OutputLocation': self.s3_output,
}
)
self.filename = response['QueryExecutionId']
print('Execution ID: ' + response['QueryExecutionId'])
except Exception as e:
print(e)
return response
def run_query(self):
queries = [self.query]
for q in queries:
res = self.load_conf(q)
try:
query_status = None
while query_status == 'QUEUED' or query_status == 'RUNNING' or query_status is None:
query_status = self.client.get_query_execution(QueryExecutionId=res["QueryExecutionId"])['QueryExecution']['Status']['State']
print(query_status)
if query_status == 'FAILED' or query_status == 'CANCELLED':
raise Exception('Athena query with the string "{}" failed or was cancelled'.format(self.query))
time.sleep(10)
print('Query "{}" finished.'.format(self.query))
df = self.obtain_data()
return df
except Exception as e:
print(e)
def obtain_data(self):
try:
self.resource = boto3.resource('s3',
region_name = self.region_name,
aws_access_key_id = self.aws_access_key_id,
aws_secret_access_key= self.aws_secret_access_key)
response = self.resource \
.Bucket(self.bucket) \
.Object(key= self.folder + self.filename + '.csv') \
.get()
return pd.read_csv(io.BytesIO(response['Body'].read()), encoding='utf8')
except Exception as e:
print(e)
if __name__ == "__main__":
query = "SELECT * FROM bucket.folder"
qa = QueryAthena(query=query, database='myAthenaDb')
dataframe = qa.run_query()