Это пользовательский метод, который может работать при условии, что среднее расстояние между точками на исходной поверхности намного меньше толщины объема и неровностей на контуре поверхности. Другими словами, есть много точек, описывающих синие поверхности.
import matplotlib.pylab as plt
import numpy as np
from scipy.spatial import KDTree
# Generate a test surface:
theta = np.linspace(3, 1, 38)
phi = np.zeros_like(theta)
r = 1 + 0.1*np.sin(8*theta)
surface_points = np.stack((r, theta, phi), axis=1) # n x 3 array
# Generate test points:
x_span, y_span = np.linspace(-1, 0.7, 26), np.linspace(0.1, 1.2, 22)
x_grid, y_grid = np.meshgrid(x_span, y_span)
r_test = np.sqrt(x_grid**2 + y_grid**2).ravel()
theta_test = np.arctan2(y_grid, x_grid).ravel()
phi_test = np.zeros_like(theta_test)
test_points = np.stack((r_test, theta_test, phi_test), axis=1) # n x 3 array
# Determine if the test points are in the volume:
volume_thickness = 0.2 # Distance between the two surfaces
angle_threshold = 0.05 # Angular threshold to determine for a point
# if the line from the origin to the point
# go through the surface
# Get the nearest point: (replace the interpolation)
get_nearest_points = KDTree(surface_points[:, 1:]) # keep only the angles
# This is based on the cartesian distance,
# and therefore not enterily valid for the angle between points on a sphere
# It could be better to project the points on a unit shpere, and convert
# all coordinates in cartesian frame in order to do the nearest point seach...
distance, idx = get_nearest_points.query(test_points[:, 1:])
go_through = distance < angle_threshold
nearest_surface_radius = surface_points[idx, 0]
is_in_volume = (go_through) & (nearest_surface_radius > test_points[:, 0]) \
& (nearest_surface_radius - volume_thickness < test_points[:, 0])
not_in_volume = np.logical_not(is_in_volume)
# Graph;
plt.figure(figsize=(10, 7))
plt.polar(test_points[is_in_volume, 1], test_points[is_in_volume, 0], '.r',
label='in volume');
plt.polar(test_points[not_in_volume, 1], test_points[not_in_volume, 0], '.k',
label='not in volume', alpha=0.2);
plt.polar(test_points[go_through, 1], test_points[go_through, 0], '.g',
label='go through', alpha=0.2);
plt.polar(surface_points[:, 1], surface_points[:, 0], '.b',
label='surface');
plt.xlim([0, np.pi]); plt.grid(False);plt.legend();
График результатов для 2D-случая:
Идея состоит в том, чтобы искать каждую контрольную точку ближайшей точки на поверхности, учитывая только направление, а не радиус. Как только эта точка "того же направления" найдена, можно проверить, находится ли точка внутри объема вдоль радиального направления (volume_thickness
) и достаточно близко к поверхности, используя параметр angle_threshold
.
Я думаю, что было бы лучше создать сетку (невыпуклую) синей поверхности и выполнить правильную интерполяцию, но я не знаю метода Сципи для этого.