RuntimeError: Функция CatBackward вернула недопустимый градиент по индексу 1 - ожидаемое устройство 1, но получило 0 - PullRequest
0 голосов
/ 07 января 2019

Я тестирую с использованием Pytorch с несколькими графическими процессорами. Я не использую DataParallel, но я хочу использовать параллелизм модели. Моя модель состоит из двух входных ветвей (каждая в отдельных графических процессорах). Я сделал пример с MNIST для воспроизводимости. Но на тренировке я получаю исключение, упомянутое ниже. Любая помощь будет оценена.

import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader

# Hyperparameters
num_epochs = 5
num_classes = 10
batch_size = 100
learning_rate = 0.001

DATA_PATH = '/data/'
MODEL_STORE_PATH = '/models/'

# transforms to apply to the data
trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])

# MNIST dataset
train_dataset = datasets.MNIST(root=DATA_PATH, train=True, transform=trans, download=True)
test_dataset = datasets.MNIST(root=DATA_PATH, train=False, transform=trans)

train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)

gpu1 = torch.device("cuda:0")
gpu2 = torch.device("cuda:1")

class DistConvNet(nn.Module):
    def __init__(self):
        super(DistConvNet, self).__init__()

        # gpu1
        self.layer1 = nn.Sequential(
            nn.Conv2d(1, 32, kernel_size=5, stride=1, padding=2),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2))
        self.layer2 = nn.Sequential(
            nn.Conv2d(32, 64, kernel_size=5, stride=1, padding=2),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2))
        self.layer1.to(gpu1)
        self.layer2.to(gpu1)

        # gpu2
        self.layer3 = nn.Sequential(
            nn.Conv2d(1, 32, kernel_size=5, stride=1, padding=2),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2))
        self.layer4 = nn.Sequential(
            nn.Conv2d(32, 64, kernel_size=5, stride=1, padding=2),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2))
        self.layer3.to(gpu2)
        self.layer4.to(gpu2)

        self.drop_out = nn.Dropout()
        self.fc1 = nn.Linear(7 * 7 * 64 * 2, 1000)
        self.fc2 = nn.Linear(1000, 10)

        self.drop_out.to(gpu1)
        self.fc1.to(gpu1)
        self.fc2.to(gpu1)

    def forward(self, x1, x2):
        out1 = self.layer1(x1)
        out1 = self.layer2(out1)

        out2 = self.layer3(x2)
        out2 = self.layer4(out2)

        out1 = out1.reshape(out1.size(0), -1)
        out2 = out2.reshape(out2.size(0), -1)
        out2.to(gpu1)


        out = torch.cat((out1, out2), 1)
        out = self.drop_out(out)
        out = self.fc1(out)
        out = self.fc2(out)
        return out

model_dist = DistConvNet()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model_dist.parameters(), lr=learning_rate)


total_step = len(train_loader)
loss_list = []
acc_list = []
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        # Run the forward pass
        images_gpu1, images_gpu2, labels = images.to(gpu1), images.to(gpu2), labels.to(gpu1)

        outputs = model_dist(images_gpu1, images_gpu2)
        loss = criterion(outputs, labels)
        loss_list.append(loss.item())

        # Backprop and perform Adam optimisation
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # Track the accuracy
        total = labels.size(0)
        _, predicted = torch.max(outputs.data, 1)
        correct = (predicted == labels).sum().item()
        acc_list.append(correct / total)

        if (i + 1) % 100 == 0:
            print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Accuracy: {:.2f}%'
                  .format(epoch + 1, num_epochs, i + 1, total_step, loss.item(),
                          (correct / total) * 100))

Я получаю следующее исключение:

---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
<ipython-input-7-27984b0eb824> in <module>
     13         # Backprop and perform Adam optimisation
     14         optimizer.zero_grad()
---> 15         loss.backward()
     16         optimizer.step()
     17 

/opt/conda/lib/python3.6/site-packages/torch/tensor.py in backward(self, gradient, retain_graph, create_graph)
    100                 products. Defaults to ``False``.
    101         """
--> 102         torch.autograd.backward(self, gradient, retain_graph, create_graph)
    103 
    104     def register_hook(self, hook):

/opt/conda/lib/python3.6/site-packages/torch/autograd/__init__.py in backward(tensors, grad_tensors, retain_graph, create_graph, grad_variables)
     88     Variable._execution_engine.run_backward(
     89         tensors, grad_tensors, retain_graph, create_graph,
---> 90         allow_unreachable=True)  # allow_unreachable flag
     91 
     92 

RuntimeError: Function CatBackward returned an invalid gradient at index 1 - expected device 1 but got 0

Любая помощь приветствуется.

...