Сбой при развертывании модели AWS Sagemaker, если указан аргумент endpoint_name. Есть мысли?
Без аргумента endpoint_name в развертывании развертывание модели работает успешно.
Обучение модели и сохранение в локацию S3 в любом случае успешны.
import boto3
import os
import sagemaker
from sagemaker import get_execution_role
from sagemaker.predictor import csv_serializer
from sagemaker.amazon.amazon_estimator import get_image_uri
bucket = 'Y'
prefix = 'Z'
role = get_execution_role()
train_data, validation_data, test_data = np.split(df.sample(frac=1, random_state=100), [int(0.5 * len(df)), int(0.8 * len(df))])
train_data.to_csv('train.csv', index=False, header=False)
validation_data.to_csv('validation.csv', index=False, header=False)
test_data.to_csv('test.csv', index=False)
boto3.Session().resource('s3').Bucket(bucket).Object(os.path.join(prefix, 'train/X/train.csv')).upload_file('train.csv')
boto3.Session().resource('s3').Bucket(bucket).Object(os.path.join(prefix, 'validation/X/validation.csv')).upload_file('validation.csv')
container = get_image_uri(boto3.Session().region_name, 'xgboost')
#print(container)
s3_input_train = sagemaker.s3_input(s3_data='s3://{}/{}/train/{}'.format(bucket, prefix, suffix), content_type='csv')
s3_input_validation = sagemaker.s3_input(s3_data='s3://{}/{}/validation/{}/'.format(bucket, prefix, suffix), content_type='csv')
sess = sagemaker.Session()
output_loc = 's3://{}/{}/output'.format(bucket, prefix)
xgb = sagemaker.estimator.Estimator(container,
role,
train_instance_count=1,
train_instance_type='ml.m4.xlarge',
output_path=output_loc,
sagemaker_session=sess,
base_job_name='X')
#print('Model output to: {}'.format(output_location))
xgb.set_hyperparameters(eta=0.5,
objective='reg:linear',
eval_metric='rmse',
max_depth=3,
min_child_weight=1,
gamma=0,
early_stopping_rounds=10,
subsample=0.8,
colsample_bytree=0.8,
num_round=1000)
#Model fitting
xgb.fit({'train': s3_input_train, 'validation': s3_input_validation})
#Deploy model with automatic endpoint created
xgb_predictor_X = xgb.deploy(initial_instance_count=1, instance_type='ml.m4.xlarge', endpoint_name='X')
xgb_predictor_X.content_type = 'text/csv'
xgb_predictor_X.serializer = csv_serializer
xgb_predictor_X.deserializer = None
ИНФОРМАЦИЯ: sagemaker: создание конечной точки с именем delaymins
ClientError: Произошла ошибка (ValidationException) при вызове операции CreateEndpoint: не удалось найти модель "arn: aws: sagemaker: us-west-2 :: model / X-2019-01-08-18-17-42-158" .