Просто соберите layer1
, layer2
как независимый модуль.
один пример:
model1
и mode2
имеют частный полностью подключенный уровень, но совместно используют слой conv2d, то есть экстрактор функций
feature_ex = nn.Sequential(OrderedDict([('conv1', nn.Conv2d(1, 6, 5)),
('relu1', nn.ReLU()),
('maxpool1', nn.MaxPool2d((2, 2))),
('conv2', nn.Conv2d(6, 16, 5)),
('relu2', nn.ReLU()),
('maxpool2', nn.MaxPool2d(2))
]))
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = feature_ex(x) # [1]
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x) # [2]
return x
def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size: # Get the products
num_features *= s
return num_features
model1 = Net()
model2 = Net()
img = torch.randn(10, 1, 32, 32)
out1 = model1.forward(img)
out2 = model2.forward(img)
# [1]
# print(np.allclose(out1.detach().numpy(), out2.detach().numpy()))
# output: True
# [2]
print(np.allclose(out1.detach().numpy(), out2.detach().numpy()))
# output: False