Я ищу общее решение для создания двумерных картограмм в R с использованием растровых файлов.
Я нашел следующий код здесь , который почти делает то, что мне нужно, но он ограничен: он может обрабатывать только данные, которые находятся между 0 и 1 по обеим осям. В моем конкретном случае использования одна ось охватывает 0-1, а другая - от -1 до 1. Независимо от моего конкретного случая использования, я думаю, что более общая функция, которая может обрабатывать различные диапазоны данных, была бы полезна для многих людей.
Я уже пытался обновить код в функции colmat
для обработки отрицательных данных, но я не могу заставить его работать. В целях ясности я избегал публикации всех моих неудачных попыток и перечитал скопированный код под кодом, который я нашел по ссылке выше, в надежде, что кто-то сможет предложить решение.
Текущий код сначала создает цветовую матрицу, используя colmat
. Сгенерированная цветовая матрица затем используется в bivariate.map
вместе с вашими двумя растровыми файлами, содержащими данные. Я думаю, что идеальным решением было бы сначала создать цветовую матрицу на основе двух растров (чтобы она могла правильно связать данные на основе ваших фактических данных, а не текущего решения, которое находится между 0 и 1).
````
library(classInt)
library(raster)
library(rgdal)
library(dismo)
library(XML)
library(maps)
library(sp)
# Creates dummy rasters
rasterx<- raster(matrix(rnorm(400),5,5))
rasterx[rasterx <=0]<-1
rastery<- raster(matrix(rnorm(400),5,5))
# This function creates a colour matrix
# At present it cannot handle negative values i.e. the matrix spans from 0 to 1 along both axes
colmat<-function(nquantiles=10, upperleft=rgb(0,150,235, maxColorValue=255), upperright=rgb(130,0,80, maxColorValue=255), bottomleft="grey", bottomright=rgb(255,230,15, maxColorValue=255), xlab="x label", ylab="y label"){
my.data<-seq(0,1,.01)
my.class<-classIntervals(my.data,n=nquantiles,style="quantile")
my.pal.1<-findColours(my.class,c(upperleft,bottomleft))
my.pal.2<-findColours(my.class,c(upperright, bottomright))
col.matrix<-matrix(nrow = 101, ncol = 101, NA)
for(i in 1:101){
my.col<-c(paste(my.pal.1[i]),paste(my.pal.2[i]))
col.matrix[102-i,]<-findColours(my.class,my.col)
}
plot(c(1,1),pch=19,col=my.pal.1, cex=0.5,xlim=c(0,1),ylim=c(0,1),frame.plot=F, xlab=xlab, ylab=ylab,cex.lab=1.3)
for(i in 1:101){
col.temp<-col.matrix[i-1,]
points(my.data,rep((i-1)/100,101),pch=15,col=col.temp, cex=1)
}
seqs<-seq(0,100,(100/nquantiles))
seqs[1]<-1
col.matrix<-col.matrix[c(seqs), c(seqs)]
}
# Creates colour matrix
col.matrix<-colmat(nquantiles=2, upperleft="blue", upperright="yellow", bottomleft="green", bottomright="red", xlab="Species Richness", ylab="Change in activity hours")
# Function to create bivariate map, given the colour ramp created previously
bivariate.map<-function(rasterx, rastery, colormatrix=col.matrix, nquantiles=10){
quanmean<-getValues(rasterx)
temp<-data.frame(quanmean, quantile=rep(NA, length(quanmean)))
brks<-with(temp, quantile(temp,na.rm=TRUE, probs = c(seq(0,1,1/nquantiles))))
r1<-within(temp, quantile <- cut(quanmean, breaks = brks, labels = 2:length(brks),include.lowest = TRUE))
quantr<-data.frame(r1[,2])
quanvar<-getValues(rastery)
temp<-data.frame(quanvar, quantile=rep(NA, length(quanvar)))
brks<-with(temp, quantile(temp,na.rm=TRUE, probs = c(seq(0,1,1/nquantiles))))
r2<-within(temp, quantile <- cut(quanvar, breaks = brks, labels = 2:length(brks),include.lowest = TRUE))
quantr2<-data.frame(r2[,2])
as.numeric.factor<-function(x) {as.numeric(levels(x))[x]}
col.matrix2<-colormatrix
cn<-unique(colormatrix)
for(i in 1:length(col.matrix2)){
ifelse(is.na(col.matrix2[i]),col.matrix2[i]<-1,col.matrix2[i]<-which(col.matrix2[i]==cn)[1])
}
cols<-numeric(length(quantr[,1]))
for(i in 1:length(quantr[,1])){
a<-as.numeric.factor(quantr[i,1])
b<-as.numeric.factor(quantr2[i,1])
cols[i]<-as.numeric(col.matrix2[b,a])}
r<-rasterx
r[1:length(r)]<-cols
return(r)
}
# Creates map
bivmap<-bivariate.map(rasterx,rastery, colormatrix=col.matrix, nquantiles=2)
# Plots a map
plot(bivmap,frame.plot=F,axes=F,box=F,add=F,legend=F,col=as.vector(col.matrix)) ````
В идеале, более общая функция должна принимать два растровых файла, определять диапазоны данных для обоих, а затем создавать двумерную карту последовательности, основываясь на количестве бинов / квантилей, указанных пользователем.