Мне нужна твоя помощь.
Мне нужно перестроить маркеры в 3D пространстве из стереоизображения. В моем случае я хотел бы восстановить маркеры, используя некалиброванный метод.
Я снимаю 2 фотографии и пока подписываю маркеры вручную.
import cv2
import numpy as np
from matplotlib import pyplot as plt
from scipy import linalg
img1 = cv2.imread('3.jpg',0)
img2 = cv2.imread('4.jpg',0)
pts1 = np.array([(1599.6711229946527, 1904.8048128342245), (1562.131016042781, 1734.4304812834225), (1495.7139037433158, 1295.5),
(2373.5748663101604, 1604.4839572192514), (2362.0240641711234, 2031.8636363636363), (2359.136363636364, 2199.3502673796793),
(2656.5695187165775, 1653.5748663101604), (2676.7834224598937, 1506.302139037433), (2740.312834224599, 1026.9438502673797),
(1957.745989304813, 807.4786096256685)],dtype='float64')
pts2 = np.array([(1579.457219251337, 1899.0294117647059), (1539.0294117647059, 1737.3181818181818),
(1472.612299465241, 1307.0508021390374), (2315.8208556149734, 1633.3609625668448),
(2298.4946524064176, 2054.9652406417113), (2301.3823529411766, 2190.687165775401),
(2630.5802139037432, 1670.9010695187167), (2642.131016042781, 1538.066844919786),
(2711.4358288770054, 1076.0347593582887), (1949.0828877005351, 842.1310160427806)],dtype='float64')
Впоследствии я нахожу фундаментальную матрицу
F, mask = cv2.findFundamentalMat(pts1,pts2,cv2.FM_7POINT)
и выведите результат из cv2.computeCorrespondEpilines
ссылка
Казалось бы, это хорошо работает!
У меня есть матрица камеры, предварительно откалиброванная на шахматной доске, следуя инструкциям на сайте opencv
mtx=np.array([[3.19134206e+03, 0.00000000e+00, 2.01707613e+03],
[0.00000000e+00, 3.18501724e+03, 1.54542273e+03],
[0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])
Извлеките Основную матрицу, следуя тому, что сообщается в книге Хартли и Циссермана
E = K.t () * F * K
E = mtx.T * F * mtx
Я разложил эту матрицу, чтобы найти матрицы поворота и перемещения
R1, R2, T = cv2.decomposeEssentialMat(E)
kr= np.dot(mtx,R1)
kt= np.dot(mtx,T)
projction2=np.hstack((kr,kt))
projction1 = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]])
получение проекционных матриц.
P1 - первая матрица, которая, как всегда описано в вышеприведенной книге, - P1 = [I | 0]
, вторая матрица - P2 = K [ R | t ]
.
теперь я использовал следующий код, чтобы вернуться к триангуляции точек
points4D = cv2.triangulatePoints(projction1, projction2, pts1.T, pts2.T)
Я конвертирую однородные координаты в декартовы, и результат таков:
coordinate_eucl= cv2.convertPointsFromHomogeneous(points4D.T)
coordinate_eucl=coordinate_eucl.reshape(-1,3)
x,y,z=coordinate_eucl.T
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(x, y, z, c='r', marker='o')
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
plt.show()
ссылка
в чем я не прав?
ТНХ